ON THE USE OF PRODUCT STRUCTURE IN SECANT METHODS FOR NONLINEAR LEAST-SQUARES PROBLEMS

被引:33
作者
HUSCHENS, J
机构
关键词
NONLINEAR LEAST SQUARES; STRUCTURED SECANT METHOD; CONVERGENCE THEORY; QUADRATIC CONVERGENCE; BOUNDED DETERIORATION;
D O I
10.1137/0804005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of adjusting the second-order term in secant methods for nonlinear least squares problems with zero-residual is addressed. The author uses the framework of structured secant methods to derive and investigate a new way to resize the approximation of the second-order term using some exact information. The resulting method is a self-adjusting structured secant method for nonlinear least squares problems, yielding a q-quadratic convergence rate for zero residual and a q-superlinear convergence rate for nonzero residual problems.
引用
收藏
页码:108 / 129
页数:22
相关论文
共 20 条
[1]   VARIATIONAL-METHODS FOR NON-LINEAR LEAST-SQUARES [J].
ALBAALI, M ;
FLETCHER, R .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1985, 36 (05) :405-421
[2]   ESTIMATION OF HESSIAN MATRIX IN NONLINEAR LEAST-SQUARES PROBLEMS WITH NON-ZERO RESIDUALS [J].
BARTHOLOMEWBIGGS, MC .
MATHEMATICAL PROGRAMMING, 1977, 12 (01) :67-80
[3]  
BJORCK A, 1989, HDB NUMERICAL ANAL, V1, P469
[4]  
Broyden C. G., 1973, Journal of the Institute of Mathematics and Its Applications, V12, P223
[5]  
Dennis J.J., 1977, STATE ART NUMERICAL, P269
[6]   LEAST CHANGE SECANT UPDATES FOR QUASI-NEWTON METHODS [J].
DENNIS, JE ;
SCHNABEL, RB .
SIAM REVIEW, 1979, 21 (04) :443-459
[7]   CONVERGENCE THEOREMS FOR LEAST-CHANGE SECANT UPDATE METHODS [J].
DENNIS, JE ;
WALKER, HF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) :949-987
[8]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[9]  
DENNIS JE, 1981, ACM T MATH SOFTWARE, V7, P348, DOI 10.1145/355958.355965
[10]  
DENNIS JE, 1983, NUMERICAL METHODS UN