False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:30
|
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [41] Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation
    Richard, Arianne C.
    Lyons, Paul A.
    Peters, James E.
    Biasci, Daniele
    Flint, Shaun M.
    Lee, James C.
    McKinney, Eoin F.
    Siegel, Richard M.
    Smith, Kenneth G. C.
    BMC GENOMICS, 2014, 15
  • [42] A Survey and Comparative Study of Statistical Tests for Identifying Differential Expression from Microarray Data
    Bandyopadhyay, Sanghamitra
    Mallik, Saurav
    Mukhopadhyay, Anirban
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (01) : 95 - 115
  • [43] Prospective Calculation of Identification Power for Individual Genes in Analyses Controlling the False Discovery Rate
    Crager, Michael R.
    GENETIC EPIDEMIOLOGY, 2012, 36 (08) : 839 - 847
  • [44] False discovery rate and permutation test: An evaluation in ERP data analysis
    Lage-Castellanos, Agustin
    Martinez-Montes, Eduardo
    Hernandez-Cabrera, Juan A.
    Galan, Lidice
    STATISTICS IN MEDICINE, 2010, 29 (01) : 63 - 74
  • [45] Assessing the Evolution of Gene Expression Using Microarray Data
    Woody, Owen Z.
    Doxey, Andrew C.
    McConkey, Brendan J.
    EVOLUTIONARY BIOINFORMATICS, 2008, 4 : 139 - 152
  • [46] ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts
    Laird, AR
    Fox, PM
    Price, CJ
    Glahn, DC
    Uecker, AM
    Lancaster, JL
    Turkeltaub, PE
    Kochunov, P
    Fox, PT
    HUMAN BRAIN MAPPING, 2005, 25 (01) : 155 - 164
  • [47] Clustering of Association Rules on Microarray Gene Expression Data
    Alagukumar, S.
    Vanitha, C. Devi Arockia
    Lawrance, R.
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 85 - 97
  • [48] Dimension reduction for classification with gene expression microarray data
    Dai, Jian J.
    Lieu, Linh
    Rocke, David
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2006, 5
  • [49] An efficient approach for classification of gene expression microarray data
    Sreepada, Rama Syamala
    Vipsita, Swati
    Mohapatra, Puspanjali
    2014 FOURTH INTERNATIONAL CONFERENCE OF EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2014, : 344 - 348
  • [50] Detection call algorithms for high-throughput gene expression microarray data
    Archer, Kellie J.
    Reese, Sarah E.
    BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) : 244 - 252