False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:30
|
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [31] Controlling the false discovery rate and increasing statistical power in ecological studies
    Waite, Thomas A.
    Campbell, Lesley G.
    ECOSCIENCE, 2006, 13 (04): : 439 - 442
  • [32] Identification of potential biomarkers for xylene exposure by microarray analyses of gene expression and methylation
    Kim, Seol Young
    Hong, Ji Young
    Yu, So-Yeon
    Kim, Gi Won
    Ahn, Jeong Jin
    Kim, Youngjoo
    Son, Sang Wook
    Park, Jong-Tae
    Hwang, Seung Yong
    MOLECULAR & CELLULAR TOXICOLOGY, 2016, 12 (01) : 15 - 20
  • [33] Variance stabilization and robust normalization for microarray gene expression data
    von Heydebreck, A
    Huber, W
    Poustka, A
    Vingron, M
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 623 - 628
  • [34] Identification of potential biomarkers for xylene exposure by microarray analyses of gene expression and methylation
    Seol Young Kim
    Ji Young Hong
    So-Yeon Yu
    Gi Won Kim
    Jeong Jin Ahn
    Youngjoo Kim
    Sang Wook Son
    Jong-Tae Park
    Seung Yong Hwang
    Molecular & Cellular Toxicology, 2016, 12 : 15 - 20
  • [35] Variance model selection with application to joint analysis of multiple microarray datasets under false discovery rate control
    Qu, Long
    Nettleton, Dan
    Dekkers, Jack C. M.
    Bacciu, Nicola
    STATISTICS AND ITS INTERFACE, 2010, 3 (04) : 477 - 491
  • [36] Microarray Data Analysis of Gene Expression Evolution
    Lin, Honghuang
    GENE REGULATION AND SYSTEMS BIOLOGY, 2009, 3 : 211 - 214
  • [37] A statistical method for the conservative adjustment of false discovery rate (q-value)
    Yinglei Lai
    BMC Bioinformatics, 18
  • [38] Practical guidelines for assessing power and false discovery rate for a fixed sample size in microarray experiments
    Tong, Tiejun
    Zhao, Hongyu
    STATISTICS IN MEDICINE, 2008, 27 (11) : 1960 - 1972
  • [39] Probabilistic lung cancer models conditioned on gene expression microarray data
    Friedman, C
    Cao, WB
    Fan, C
    METHODS OF MICROARRAY DATA ANALYSIS IV, 2005, : 133 - 146
  • [40] Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation
    Arianne C Richard
    Paul A Lyons
    James E Peters
    Daniele Biasci
    Shaun M Flint
    James C Lee
    Eoin F McKinney
    Richard M Siegel
    Kenneth GC Smith
    BMC Genomics, 15