False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:30
|
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [21] Differential and correlation analyses of microarray gene expression data in the CEPH Utah families
    Tan, Qihua
    Zhao, Jinghua
    Li, Shuxia
    Christiansen, Lene
    Kruse, Torben A.
    Christensen, Kaare
    GENOMICS, 2008, 92 (02) : 94 - 100
  • [22] Comparison of false discovery rate methods in identifying genes with differential expression
    Qian, HR
    Huang, SG
    GENOMICS, 2005, 86 (04) : 495 - 503
  • [23] Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data
    Nitin Jain
    HyungJun Cho
    Michael O'Connell
    Jae K Lee
    BMC Bioinformatics, 6
  • [24] Optimal False Discovery Rate Control with Kernel Density Estimation in a Microarray Experiment
    Kang, Moonsu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 771 - 780
  • [25] Bayesian models for gene expression with DNA microarray data
    Ibrahim, JG
    Chen, MH
    Gray, RJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 88 - 99
  • [26] GEPRO: Gene Expression Profiler for DNA microarray data
    Kim, Beob G.
    Lindemann, Merlin D.
    Bridges, Phillip J.
    Ko, CheMyong
    REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2009, 22 (01) : 12 - 18
  • [27] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [28] Thresholding of statistical maps in functional neuroimaging using the false discovery rate
    Genovese, CR
    Lazar, NA
    Nichols, T
    NEUROIMAGE, 2002, 15 (04) : 870 - 878
  • [29] False Discovery Rate for Wavelet-Based Statistical Parametric Mapping
    Van De Ville, Dimitri
    Unser, Michael
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (06) : 897 - 906
  • [30] Statistical analysis of a gene expression microarray experiment with replication
    Kerr, MK
    Afshari, CA
    Bennett, L
    Bushel, P
    Martinez, J
    Walker, NJ
    Churchill, GA
    STATISTICA SINICA, 2002, 12 (01) : 203 - 217