SOLITON EVOLUTION IN THE PRESENCE OF PERTURBATION

被引:200
作者
KARPMAN, VI
机构
[1] Institute for Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), Moscow Region
关键词
D O I
10.1088/0031-8949/20/3-4/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A perturbation theory for nonlinear waves based on the inverse scattering method is presented. The theory is applied to the description of soliton evolution in the presence of permanent perturbation. It is shown that small perturbation leads to three main effects: (i) a slow change of soliton parameters; (ii) a deformation of its shape (iii) formation of a soliton “tail” which is a small amplitude wave packet with growing length. All these effects are investigated in detail for the Korteweg-de Vries, modified Korteweg-de Vries and nonlinear SchrÖdinger equations to which perturbation terms of general form are added. It is show, in particular, that for the last equation, in contrast to the previous two, the tails do not appear for perturbations of a very broad type. © 1979 IOP Publishing Ltd.
引用
收藏
页码:462 / 478
页数:17
相关论文
共 40 条
  • [1] NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    [J]. PHYSICAL REVIEW LETTERS, 1973, 31 (02) : 125 - 127
  • [2] [Anonymous], IZV ROSS AKAD NAUK M
  • [3] Faddeev L., 1964, T MATEM I VA STEKLOV, V73, P314
  • [4] COLLAPSE OF A KORTEWEG DE VRIES SOLITON INTO A WEAK NOISE SHELF
    FERNANDEZ, JC
    REINISCH, G
    BONDESON, A
    WEILAND, J
    [J]. PHYSICS LETTERS A, 1978, 66 (03) : 175 - 178
  • [5] METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION
    GARDNER, CS
    GREENE, JM
    KRUSKAL, MD
    MIURA, RM
    [J]. PHYSICAL REVIEW LETTERS, 1967, 19 (19) : 1095 - &
  • [7] Karpman V.I., 1975, NONLINEAR WAVES DISP
  • [8] KARPMAN VI, 1978, ZH EKSP TEOR FIZ+, V75, P504
  • [9] INVERSE PROBLEM METHOD FOR PERTURBED NONLINEAR SCHRODINGER EQUATION
    KARPMAN, VI
    MASLOV, EM
    [J]. PHYSICS LETTERS A, 1977, 61 (06) : 355 - 357
  • [10] KARPMAN VI, 1977, PHYS LETT A, V61, P493