THEORY AND METHODS WEIGHTED ESTIMATION OF THE LOCATION PARAMETER OF A SYMMETRIC STABLE DISTRIBUTION

被引:0
|
作者
van Zyl, J. M. [1 ]
Schall, Robert [1 ]
机构
[1] Univ Free State, Dept Math Stat & Actuarial Sci, Bloemfontein, South Africa
关键词
Location parameter; numerical integration; stable distribution; weighted estimation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a class of weighted estimators of the location parameter of a symmetric stable distribution, where the weights decrease exponentially as a function of the scaled absolute deviation of observations from the sample median. The proposed weighted mean outperforms both the unweighted sample mean and the median for stable symmetric distributions with stability index 1 < 2, and outperforms the optimal trimmed mean for the Cauchy distribution.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Parameter estimation of LFM signals based on optimal L-Cauchy weighted method in α stable distribution noise
    Jin Y.
    Hu B.-X.
    Ji H.-B.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2016, 38 (07): : 1488 - 1495
  • [22] Weighted least squares estimation of the shape parameter of the Weibull distribution
    Hung, WL
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2001, 17 (06) : 467 - 469
  • [23] On interval estimation methods for the location parameter of the Weibull distribution: An application to alloy material fatigue failure data
    Yang, Xiaoyu
    Xie, Liyang
    Song, Jiaxin
    Zhao, Bingfeng
    Li, Yuan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (17) : 6240 - 6251
  • [24] Estimation of the multivariate symmetric stable distribution using the method of moments
    Bodnar, Taras
    Otryakhin, Dmitry
    Thorsen, Erik
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [25] Decoupled Location Parameter Estimation of Near-Field Sources with Symmetric ULA
    Kwon, Bum-Soo
    Jung, Tae-Jin
    Lee, Kyun-Kyung
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2011, E94B (09) : 2646 - 2649
  • [26] Shrinkage Estimation of a Location Parameter for a Multivariate Skew Elliptic Distribution
    Fourdrinier, Dominique
    Kubokawa, Tatsuya
    Strawderman, William E.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 808 - 828
  • [27] Estimation of the Location Parameter of a General Half-Normal Distribution
    Patra, Lakshmi Kanta
    Kumar, Somesh
    Gupta, Nitin
    MATHEMATICS AND COMPUTING (ICMC 2018), 2018, 253 : 281 - 293
  • [28] Shrinkage Estimation of a Location Parameter for a Multivariate Skew Elliptic Distribution
    Dominique Fourdrinier
    Tatsuya Kubokawa
    William E. Strawderman
    Sankhya A, 2023, 85 : 808 - 828
  • [29] Comparison of estimation methods for the parameters of the weighted Lindley distribution
    Mazucheli, J.
    Louzada, F.
    Ghitany, M. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 463 - 471
  • [30] A Note on Location Parameter Estimation using the Weighted Hodges-Lehmann Estimator
    Gao, Xuehong
    Chen, Zhijin
    Kim, Bosung
    Park, Chanseok
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2024, 23 (03): : 323 - 341