Quantifying the promise of 'beyond' Li-ion batteries

被引:41
作者
Sapunkov, Oleg [1 ]
Pande, Vikram [1 ]
Khetan, Abhishek [2 ]
Choomwattana, Chayanit [1 ]
Viswanathan, Venkatasubramanian [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Rhein Westfal TH Aachen, Inst Combust Technol, D-52056 Aachen, Germany
来源
TRANSLATIONAL MATERIALS RESEARCH | 2015年 / 2卷 / 04期
关键词
batteries; energy storage; hype chart;
D O I
10.1088/2053-1613/2/4/045002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is a growing consensus that future specific energy improvements in Li-ion batteries may not ever be sufficient to allow mass market adoption of electric vehicles, as we approach the physical limits of storage capacity of current Li-ion batteries. Several 'beyond li-ion' (BLI) chemistries are being explored as possible high-energy-density alternatives to Li-ion batteries. In this article, we focus on analyzing three BLI battery systems: Li-air, Li-sulphur and Na-air. We present a comprehensive discussion of the fundamental material challenges associated with these chemistries and document the progress being made in translating next-generation battery systems from the lab to the market. We also carry out a critical examination of the hype surrounding emerging battery technologies. We report, for the first time, a hype chart for batteries akin to those popularized by Gartner, Inc. for emerging technologies. We expect this hype chart to give us better insights on the respective standings of the current BLI technologies.
引用
收藏
页数:21
相关论文
共 110 条
  • [61] Nonaqueous Li-Air Batteries: A Status Report
    Luntz, Alan C.
    McCloskey, Bryan D.
    [J]. CHEMICAL REVIEWS, 2014, 114 (23) : 11721 - 11750
  • [62] Optimizing Main Materials for a Lithium- Air Battery of High Cycle Life
    Luo, Zhong-Kuan
    Liang, Chun-Sheng
    Wang, Fang
    Xu, Yang-Hai
    Chen, Jing
    Liu, Dong
    Sun, Hong-Yuan
    Yang, Hui
    Fan, Xian-Ping
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (14) : 2101 - 2105
  • [63] Rechargeable Lithium-Sulfur Batteries
    Manthiram, Arumugam
    Fu, Yongzhu
    Chung, Sheng-Heng
    Zu, Chenxi
    Su, Yu-Sheng
    [J]. CHEMICAL REVIEWS, 2014, 114 (23) : 11751 - 11787
  • [64] Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries
    McCloskey, B. D.
    Speidel, A.
    Scheffler, R.
    Miller, D. C.
    Viswanathan, V.
    Hummelshoj, J. S.
    Norskov, J. K.
    Luntz, A. C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (08): : 997 - 1001
  • [65] Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries
    McCloskey, Bryan D.
    Garcia, Jeannette M.
    Luntz, Alan C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07): : 1230 - 1235
  • [66] All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries
    Mitchell, Robert R.
    Gallant, Betar M.
    Thompson, Carl V.
    Shao-Horn, Yang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) : 2952 - 2958
  • [67] Design of Non-aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries
    Mizuno, Fuminori
    Nakanishi, Shinji
    Shirasawa, Atsushi
    Takechi, Kensuke
    Shiga, Tohru
    Nishikoori, Hidetaka
    Iba, Hideki
    [J]. ELECTROCHEMISTRY, 2011, 79 (11) : 876 - 881
  • [68] NEWMAN J, 1975, AICHE J, V21, P25, DOI 10.1002/aic.690210103
  • [69] Cycle life modeling of lithium-ion batteries
    Ning, G
    Popov, BN
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) : A1584 - A1591
  • [70] Rechargeable Li2O2 electrode for lithium batteries
    Ogasawara, T
    Débart, A
    Holzapfel, M
    Novak, P
    Bruce, PG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (04) : 1390 - 1393