Quantifying the promise of 'beyond' Li-ion batteries

被引:41
作者
Sapunkov, Oleg [1 ]
Pande, Vikram [1 ]
Khetan, Abhishek [2 ]
Choomwattana, Chayanit [1 ]
Viswanathan, Venkatasubramanian [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Rhein Westfal TH Aachen, Inst Combust Technol, D-52056 Aachen, Germany
来源
TRANSLATIONAL MATERIALS RESEARCH | 2015年 / 2卷 / 04期
关键词
batteries; energy storage; hype chart;
D O I
10.1088/2053-1613/2/4/045002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is a growing consensus that future specific energy improvements in Li-ion batteries may not ever be sufficient to allow mass market adoption of electric vehicles, as we approach the physical limits of storage capacity of current Li-ion batteries. Several 'beyond li-ion' (BLI) chemistries are being explored as possible high-energy-density alternatives to Li-ion batteries. In this article, we focus on analyzing three BLI battery systems: Li-air, Li-sulphur and Na-air. We present a comprehensive discussion of the fundamental material challenges associated with these chemistries and document the progress being made in translating next-generation battery systems from the lab to the market. We also carry out a critical examination of the hype surrounding emerging battery technologies. We report, for the first time, a hype chart for batteries akin to those popularized by Gartner, Inc. for emerging technologies. We expect this hype chart to give us better insights on the respective standings of the current BLI technologies.
引用
收藏
页数:21
相关论文
共 110 条
  • [1] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [2] Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/nchem.2132, 10.1038/NCHEM.2132]
  • [3] Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling
    Albertus, Paul
    Girishkumar, G.
    McCloskey, Bryan
    Sanchez-Carrera, Roel S.
    Kozinsky, Boris
    Christensen, Jake
    Luntz, A. C.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A343 - A351
  • [4] Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li-Air Batteries
    Allen, Chris J.
    Hwang, Jaehee
    Kautz, Roger
    Mukerjee, Sanjeev
    Plichta, Edward J.
    Hendrickson, Mary A.
    Abraham, K. M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (39) : 20755 - 20764
  • [5] High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells
    Amine, K
    Liu, J
    Belharouak, I
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) : 669 - 673
  • [6] Andrea D., 2010, BATTERY MANAGEMENT S
  • [7] On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
    Aurbach, Doron
    Pollak, Elad
    Elazari, Ran
    Salitra, Gregory
    Kelley, C. Scordilis
    Affinito, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) : A694 - A702
  • [8] Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries
    Barchasz, Celine
    Lepretre, Jean-Claude
    Patoux, Sebastien
    Alloin, Fannie
    [J]. ELECTROCHIMICA ACTA, 2013, 89 : 737 - 743
  • [9] Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives
    Barchasz, Celine
    Lepretre, Jean-Claude
    Patoux, Sebastien
    Alloin, Fannie
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) : A430 - A436
  • [10] Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes
    Basile, Andrew
    Hollenkamp, Anthony F.
    Bhatt, Anand I.
    O'Mullane, Anthony P.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 : 69 - 72