DYNAMIC UNIVERSALITY FOR Z2 AND Z3 LATTICE GAUGE-THEORIES AT FINITE TEMPERATURE

被引:3
|
作者
BROWER, RC [1 ]
HUANG, SH [1 ]
机构
[1] BOSTON UNIV,DEPT ELECT COMP & SYST ENGN,BOSTON,MA 02215
来源
PHYSICAL REVIEW D | 1991年 / 44卷 / 12期
关键词
D O I
10.1103/PhysRevD.44.3911
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Swendsen-Wang random surface dynamics for Z2 and Z3 gauge theories in 2 + 1 dimensions is applied to the finite-temperature deconfining transition, and the static universality conjecture of Svetitsky and Yaffe is extended to the exponent z for critical dynamics. Our new dynamic universality conjecture (z(RS)d + 1 = z(SW)d) is supported both by a qualitative argument and by numerical simulations that show that the dynamic critical exponents for (2 + 1)-dimensional gauge theories (logarithmic or z(RS) < 0.3 +/- 0.1 and 0.53 +/- 0.03 for Z2 and Z3, respectively) are consistent with the values for the two-dimensional Ising-Potts models (logarithmic or z(SW) = 0.20-0.27 and 0.55 +/- 0.03 for Z2 and Z3, respectively) at the finite-temperature transition.
引用
收藏
页码:3911 / 3917
页数:7
相关论文
共 50 条
  • [41] STRONG COUPLING EXPANSION OF LATTICE GAUGE-THEORIES AT FINITE TEMPERATURE
    FALDT, G
    PETERSSON, B
    NUCLEAR PHYSICS B, 1986, 265 (01) : 197 - 222
  • [42] PHOTOCONDUCTIVITY OF Z1, Z2, AND Z3 CENTERS IN KCL-SR
    FRIAUF, RJ
    RENNEKE, DR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (03): : 440 - &
  • [43] Ternary Z2 × Z3 Graded Algebras and Ternary Dirac Equation
    R. Kerner
    Physics of Atomic Nuclei, 2018, 81 : 874 - 889
  • [44] Soluble limit and criticality of fermions in Z2 gauge theories
    Koenig, Elio J.
    Coleman, Piers
    Tsvelik, Alexei M.
    PHYSICAL REVIEW B, 2020, 102 (15)
  • [45] MEMBRANE MODELS AND GENERALIZED Z-2 GAUGE-THEORIES
    LOWE, MJ
    WALLACE, DJ
    PHYSICS LETTERS B, 1980, 93 (04) : 433 - 436
  • [46] THE PHASE-STRUCTURE OF SU(N)-Z(N) LATTICE GAUGE-THEORIES
    HALLIDAY, IG
    SCHWIMMER, A
    PHYSICS LETTERS B, 1981, 101 (05) : 327 - 331
  • [47] BACKGROUND FIELDS IN 3-DIMENSIONAL LATTICE GAUGE-THEORIES AT ZERO AND FINITE TEMPERATURE
    TROTTIER, HD
    WOLOSHYN, RM
    NUCLEAR PHYSICS B, 1993, : 904 - 907
  • [48] Confinement for all couplings in a Z2 lattice gauge theory
    Orland, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (13)
  • [49] Simulating Z2 lattice gauge theory on a quantum computer
    Charles, Clement
    Gustafson, Erik J.
    Hardt, Elizabeth
    Herren, Florian
    Hogan, Norman
    Lamm, Henry
    Starecheski, Sara
    Van de Water, Roth S.
    Wagman, Michael L.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [50] Confinement in a Z2 lattice gauge theory on a quantum computer
    Mildenberger, Julius
    Mruczkiewicz, Wojciech
    Halimeh, Jad C.
    Jiang, Zhang
    Hauke, Philipp
    NATURE PHYSICS, 2025, 21 (02) : 312 - 317