DYNAMIC UNIVERSALITY FOR Z2 AND Z3 LATTICE GAUGE-THEORIES AT FINITE TEMPERATURE

被引:3
|
作者
BROWER, RC [1 ]
HUANG, SH [1 ]
机构
[1] BOSTON UNIV,DEPT ELECT COMP & SYST ENGN,BOSTON,MA 02215
来源
PHYSICAL REVIEW D | 1991年 / 44卷 / 12期
关键词
D O I
10.1103/PhysRevD.44.3911
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Swendsen-Wang random surface dynamics for Z2 and Z3 gauge theories in 2 + 1 dimensions is applied to the finite-temperature deconfining transition, and the static universality conjecture of Svetitsky and Yaffe is extended to the exponent z for critical dynamics. Our new dynamic universality conjecture (z(RS)d + 1 = z(SW)d) is supported both by a qualitative argument and by numerical simulations that show that the dynamic critical exponents for (2 + 1)-dimensional gauge theories (logarithmic or z(RS) < 0.3 +/- 0.1 and 0.53 +/- 0.03 for Z2 and Z3, respectively) are consistent with the values for the two-dimensional Ising-Potts models (logarithmic or z(SW) = 0.20-0.27 and 0.55 +/- 0.03 for Z2 and Z3, respectively) at the finite-temperature transition.
引用
收藏
页码:3911 / 3917
页数:7
相关论文
共 50 条