THE PRODUCT-PRODUCT SINGULAR VALUE DECOMPOSITION OF MATRIX TRIPLETS

被引:8
作者
ZHA, HY [1 ]
机构
[1] STANFORD UNIV,STANFORD,CA 94305
来源
BIT | 1991年 / 31卷 / 04期
关键词
SINGULAR VALUE DECOMPOSITION; MATRIX PRODUCT; IMPLICIT KOGBETLIANTZ TECHNIQUE;
D O I
10.1007/BF01933183
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new decomposition of a matrix triplet (A, B, C) corresponding to the singular value decomposition of the matrix product ABC is developed in this paper, which will be termed the Product-Product Singular Value Decomposition (PPSVD). An orthogonal variant of the decomposition which is more suitable for the purpose of numerical computation is also proposed. Some geometric and algebraic issues of the PPSVD, such as the variational and geometric interpretations, and uniqueness properties are discussed. A numerical algorithm for stably computing the PPSVD is given based on the implicit Kogbetliantz technique. A numerical example is outlined to demonstrate the accuracy of the proposed algorithm.
引用
收藏
页码:711 / 726
页数:16
相关论文
共 50 条
[41]   Efficient fission neutron spectrum matrix representation by singular value decomposition technique [J].
Chiba, Go ;
Yamamoto, Akio ;
Tsuji, Masashi ;
Narabayashi, Tadashi .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2012, 49 (07) :748-753
[42]   Wave Polarization Analyzed by Singular Value Decomposition of the Spectral Matrix in the Presence of Noise [J].
Taubenschuss, Ulrich ;
Santolik, Ondrej .
SURVEYS IN GEOPHYSICS, 2019, 40 (01) :39-69
[43]   Color image restoration based on reduced biquaternion matrix singular value decomposition [J].
Cai, Xiao-Min ;
Ke, Yi-Fen ;
Chen, Lin-Jie .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460
[44]   Big Data Matrix Singular Value Decomposition Based on Low-Rank Tensor Train Decomposition [J].
Lee, Namgil ;
Cichocki, Andrzej .
ADVANCES IN NEURAL NETWORKS - ISNN 2014, 2014, 8866 :121-130
[45]   ON THE ERROR IN THE PRODUCT QR DECOMPOSITION [J].
Van Vleck, Erik S. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) :1775-1791
[46]   Singular value decomposition with weighting matrix applied for optical-resolution photoacoustic microscopes [J].
Sulistyawan, I. Gede Eka ;
Nishimae, Daisuke ;
Ishii, Takuro ;
Saijo, Yoshifumi .
ULTRASONICS, 2024, 143
[47]   Matrix low-rank approximate quantum algorithm based on singular value decomposition [J].
Wang Fu-Rong ;
Yang Fan ;
Zhang Ya ;
Li Shi-Zhong ;
Wang He-Feng .
ACTA PHYSICA SINICA, 2021, 70 (15)
[48]   Singular value decomposition of system input-output matrix and its symmetry property [J].
Wang, SH ;
Zachery, R .
COMPUTERS & ELECTRICAL ENGINEERING, 1996, 22 (03) :231-234
[49]   Visual support for text information retrieval based on matrix's singular value decomposition [J].
Hou, JY ;
Zhang, YC ;
Cao, JL ;
Lai, W .
PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS ENGINEERING, VOL I, 2000, :344-351
[50]   Image Watermarking in LWT Domain Based on Nonnegative Matrix Factorization and Singular Value Decomposition [J].
Dhar, Pranab Kumar ;
Shimamura, Telsuya .
2014 9TH INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGY (IFOST), 2014, :144-147