THE PRODUCT-PRODUCT SINGULAR VALUE DECOMPOSITION OF MATRIX TRIPLETS

被引:8
作者
ZHA, HY [1 ]
机构
[1] STANFORD UNIV,STANFORD,CA 94305
来源
BIT | 1991年 / 31卷 / 04期
关键词
SINGULAR VALUE DECOMPOSITION; MATRIX PRODUCT; IMPLICIT KOGBETLIANTZ TECHNIQUE;
D O I
10.1007/BF01933183
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new decomposition of a matrix triplet (A, B, C) corresponding to the singular value decomposition of the matrix product ABC is developed in this paper, which will be termed the Product-Product Singular Value Decomposition (PPSVD). An orthogonal variant of the decomposition which is more suitable for the purpose of numerical computation is also proposed. Some geometric and algebraic issues of the PPSVD, such as the variational and geometric interpretations, and uniqueness properties are discussed. A numerical algorithm for stably computing the PPSVD is given based on the implicit Kogbetliantz technique. A numerical example is outlined to demonstrate the accuracy of the proposed algorithm.
引用
收藏
页码:711 / 726
页数:16
相关论文
共 50 条
[21]   Outsourcing Eigen-Decomposition and Singular Value Decomposition of Large Matrix to a Public Cloud [J].
Zhou, Lifeng ;
Li, Chunguang .
IEEE ACCESS, 2016, 4 :869-879
[22]   Approximate Joint Singular Value Decomposition of an Asymmetric Rectangular Matrix Set [J].
Congedo, Marco ;
Phlypo, Ronald ;
Pham, Dinh-Tuan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) :415-424
[23]   Denoising color images by reduced quaternion matrix singular value decomposition [J].
Gai, Shan ;
Yang, Guowei ;
Wan, Minghua ;
Wang, Lei .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) :307-320
[24]   Denoising color images by reduced quaternion matrix singular value decomposition [J].
Shan Gai ;
Guowei Yang ;
Minghua Wan ;
Lei Wang .
Multidimensional Systems and Signal Processing, 2015, 26 :307-320
[25]   On singular value decomposition and generalized inverse of a commutative quaternion matrix and applications [J].
Zhang, Dong ;
Jiang, Tongsong ;
Wang, Gang ;
Vasil'ev, V. I. .
APPLIED MATHEMATICS AND COMPUTATION, 2024, 460
[26]   Singular value decomposition of the compliance response matrix for the triaxial stress condition [J].
Jung, Young-Hoon ;
Cho, Wanjei .
COMPUTERS AND GEOTECHNICS, 2010, 37 (04) :565-572
[27]   Comments on "Outsourcing Eigen-Decomposition and Singular Value Decomposition of Large Matrix to a Public Cloud" [J].
Rath, Satyabrat ;
Ramalingam, Jothi .
IEEE ACCESS, 2024, 12 :116013-116016
[28]   A RESTRICTED SVD TYPE CUR DECOMPOSITION FOR MATRIX TRIPLETS [J].
Gidisu, Perfect Y. ;
Hochstenbach, Michiel E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (02) :S401-S423
[29]   Visualizing singular value decomposition [J].
Zhang, Lingsong ;
Wang, Yao .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (03) :197-201
[30]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278