To Chang Theorem. III

被引:0
作者
Antonov, S. Yu. [1 ]
Antonova, A. V. [1 ]
机构
[1] Kazan State Power Engn Univ, 51 Krasnoselskaya Str, Kazan 420066, Russia
来源
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA | 2018年 / 18卷 / 02期
关键词
T-ideal; standard polynomial; Capelli polynomial;
D O I
10.18500/1816-9791-2018-18-2-128-143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Various multilinear polynomials of Capelli type belonging to a free associative algebra F{X boolean OR Y} over an arbitrary field F generated by a countable set X boolean OR Y are considered. The formulas expressing coefficients of polynomial Chang R(<(x))over bar>,<(y))over bar>vertical bar<(w))over bar>) are found. It is proved that if the characteristic of field I.' is not equal two then polynomial R(<(x))over bar>,<(y))over bar>vertical bar<(w))over bar>) may be represented by different ways in the form of sum of two consequences of standard polynomial S- (<(x))over bar>). The decomposition of Chang polynomial .H(<(x))over bar>,<(y))over bar>vertical bar<(w))over bar>) different from already known is given. Besides, the connection between polynomials R(<(x))over bar>,<(y))over bar>vertical bar<(w))over bar>)and H(<(x))over bar>,<(y))over bar>vertical bar<(w))over bar>) is found. Some consequences of standard polynomial being of great interest for algebras with polynomial identities are obtained. In particular, a new identity of minimal degree for odd component of Z(2)- -graded matrix algebra M-(m,M-m) (F) is given.
引用
收藏
页码:128 / 143
页数:16
相关论文
共 15 条
[1]   MINIMAL IDENTITIES FOR ALGEBRAS [J].
AMITSUR, AS ;
LEVITZKI, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (04) :449-463
[2]  
Antonov SY, 2016, UCHEN ZAP KAZ U-MAT, V158, P5
[3]  
Antonov SY, 2017, IZV SARAT UNIV NOVAY, V17, P127, DOI 10.18500/1816-9791-2017-17-2-127-137
[4]   Quasi-polynomials of Capelli [J].
Antonov, S. Yu ;
Antonova, A., V .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2015, 15 (04) :371-382
[5]   To Chang Theorem [J].
Antonov, S. Yu ;
Antonova, A., V .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2015, 15 (03) :247-251
[6]   Basis of Graded Identities of the Superalgebra M1,2(F) [J].
Aver'yanov, I. V. .
MATHEMATICAL NOTES, 2009, 85 (3-4) :467-483
[7]   SOME CONSEQUENCES OF THE STANDARD POLYNOMIAL [J].
CHANG, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (03) :707-710
[8]   THE COMPLEXITY OF A BUNDLE OF VARIETIES OF ASSOCIATIVE ALGEBRAS [J].
GATEVA, TV .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (01) :233-233
[9]   REMARK ON STANDARD IDENTITY [J].
KEMER, AR .
MATHEMATICAL NOTES, 1978, 23 (5-6) :414-416
[10]  
KOSTANT B, 1958, J MATH MECH, V7, P237