Application of support vector machine to synthetic earthquake prediction

被引:7
作者
Jiang, Chun [1 ]
Wei, Xueli [2 ]
Cui, Xiaofeng [1 ]
You, Dexiang [2 ]
机构
[1] Earthquake Adm Tianjin Municipal, Tianjin 300201, Peoples R China
[2] Tianjin Univ Technol, Tianjin 300191, Peoples R China
关键词
support vector machine; seismicity parameter; precursory data; synthetic earthquake prediction;
D O I
10.1007/s11589-009-0315-8
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper introduces the method of support vector machine (SVM) into the field of synthetic earthquake prediction, which is a non-linear and complex seismogenic system. As an example, we apply this method to predict the largest annual magnitude for the North China area (30 degrees E-42 degrees E, 108 degrees N-125 degrees N) and the capital region (38 degrees E-41.5 degrees E, 114 degrees N-120 degrees N) on the basis of seismicity parameters and observed precursory data. The corresponding prediction rates for the North China area and the capital region are 64.1% and 75%, respectively, which shows that the method is feasible.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 13 条
[1]  
CHEN Q, 2002, EXPERT REV MOL MED, P1
[2]  
Chen X Z, 2008, RECENT DEV WORLD SEI, P1
[3]  
Jiang C, 2000, ACTA SEISMOLOGICA SI, V13, P448, DOI DOI 10.1007/S11589-000-0027-6
[4]  
[蒋淳 Jiang Chun], 2006, [中国地震, Earthquake Research in China], V22, P303
[5]  
Scholkopf B, 1998, ADV NEUR IN, V10, P640
[6]  
Vapnik V, 2005, NATURE STAT LEARNING, P8
[7]  
[王炜 Wang Wei], 2005, [地震, Earthquake], V25, P26
[8]  
Wang W, 2006, EARTHQ SCI, V19, P30
[9]  
Xi S L, 1983, OPTIMIZED COMPUTATIO, P32
[10]  
Zhang Z C, 1999, ENTERPRISE COMPETITI, P1