THE EXISTENCE OF EQUILIBRIA IN CERTAIN GAMES, SEPARATION FOR FAMILIES OF CONVEX-FUNCTIONS AND A THEOREM OF BORSUK-ULAM TYPE

被引:28
作者
SIMON, RS [1 ]
SPIEZ, S [1 ]
TORUNCZYK, H [1 ]
机构
[1] POLISH ACAD SCI,INST MATEMAT,PL-00950 WARSAW,POLAND
关键词
D O I
10.1007/BF02762067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a Nash equilibrium in the undiscounted repeated two-person game of incomplete information on one side is established. The proof depends on a new topological result resembling in some respect the Borsuk-Ulam theorem.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 23 条
[1]  
AUMANN R, 1968, MATH ST, V143, P117
[2]  
Aumann R. J., REPEATED GAMES INCOM
[3]   BI-CONVEXITY AND BI-MARTINGALES [J].
AUMANN, RJ ;
HART, S .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 54 (02) :159-180
[4]  
AUMANN RJ, 1966, GAME THEORETIC ASPEC
[5]   THE VIETORIS MAPPING THEOREM FOR BICOMPACT SPACES [J].
BEGLE, EG .
ANNALS OF MATHEMATICS, 1950, 51 (03) :534-543
[6]  
Blackwell D., 1956, PACIFIC J MATH, V6, P1, DOI [10.2140/pjm.1956.6.1, DOI 10.2140/PJM.1956.6.1]
[7]  
Borsuk K, 1933, FUND MATH, V20, P177, DOI DOI 10.4064/FM-20-1-177-190
[8]  
EILENBERG S, 1952, F ALGEBRAIC TOPOLOGY
[9]  
FORGES F, 1992, HDB GAME THEORY, V1
[10]   GAMES WITH INCOMPLETE INFORMATION PLAYED BY BAYESIAN PLAYERS .2. BAYESIAN EQUILIBRIUM POINTS [J].
HARSANYI, JC .
MANAGEMENT SCIENCE, 1968, 14 (05) :320-334