THE MERCK-FROSST-AWARD-LECTURE 1994 - CALMODULIN - A VERSATILE CALCIUM MEDIATOR PROTEIN

被引:212
作者
VOGEL, HJ
机构
[1] Department of Biological Sciences, University of Calgary, AB
来源
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE | 1994年 / 72卷 / 9-10期
关键词
CALMODULIN; CALCIUM METABOLISM; METHIONINE; LYSINE; NMR SPECTROSCOPY;
D O I
10.1139/o94-049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The level of intracellular calcium is strictly regulated in all cells. In a resting cell, the [Ca2+] is less than or equal to 10(-7) M and during activation it rises to approximately 10(-6) M. Calmodulin (CaM) is the secondary messenger protein that has to translate this modest rise in intracellular calcium into a physiological response in all eukaryotic cells. CaM can activate almost 30 different target systems, including smooth muscle contraction, protein kinases and phosphatases, nitric oxide synthases, and calcium-extruding pumps. It is an acidic protein of 148 amino acids with four helix-loop-helix calcium-binding domains and it has a characteristic dumbbell shape in the crystal structure. In this review I discuss which features of CaM allow it to be such a universal and versatile calcium regulator. First of all, the positive cooperative calcium binding to all four binding sites of CaM in the presence of a target protein allows the protein to act effectively during a calcium transient. Secondly, the high Met content of two hydrophobic surface patches on the two domains of CaM creates a flexible and pliable, yet sticky, interaction surface that does not place high demands on the specificity of the interaction. Consequently, calcium-CaM can bind effectively to the CaM-binding domains of all its target proteins, despite their lack of amino acid sequence homology; their only common feature is that they are hydrophobic basic peptides that have a propensity to form an alpha-helix. CaM's capacity to recognize its CaM-binding domains is further enhanced by its third crucial feature, the intrinsic flexibility of the central linker region; this allows the two domains of CaM to slide over the surface of the alpha-helical bound peptide, to find their most favourable binding orientation. In this review I have also presented selected examples of a variety of experimental techniques that have contributed to our understanding of this unique multitasking protein. These include studies with well-established techniques such as site-directed mutagenesis, chemical modification, limited proteolysis, circular dichroism, and two-dimensional nuclear magnetic resonance (NMR), as well as novel or less common approaches involving the use of unnatural amino acids, metal-ion NMR, lysine pK(a) determinations, and isotope-edited Fourier transform infrared spectroscopy. In combination with available structural information, these studies have provided considerable detail in our understanding of this versatile calcium regulatory protein.
引用
收藏
页码:357 / 376
页数:20
相关论文
共 159 条
[1]   THE BIOCHEMICAL BASIS OF THE REGULATION OF SMOOTH-MUSCLE CONTRACTION [J].
ALLEN, BG ;
WALSH, MP .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (09) :362-368
[2]   CD-113 NUCLEAR MAGNETIC-RESONANCE STUDIES OF PROTEOLYTIC FRAGMENTS OF CALMODULIN - ASSIGNMENT OF STRONG AND WEAK CATION BINDING-SITES [J].
ANDERSSON, A ;
FORSEN, S ;
THULIN, E ;
VOGEL, HJ .
BIOCHEMISTRY, 1983, 22 (10) :2309-2313
[3]  
ARAMINI JM, 1995, IN PRESS COORD CHEM
[4]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204
[5]   3-DIMENSIONAL STRUCTURE OF CALMODULIN [J].
BABU, YS ;
SACK, JS ;
GREENHOUGH, TJ ;
BUGG, CE ;
MEANS, AR ;
COOK, WJ .
NATURE, 1985, 315 (6014) :37-40
[6]   CALMODULIN AND CALMODULIN-BINDING PROTEINS IN THE NUCLEUS [J].
BACHS, O ;
AGELL, N ;
CARAFOLI, E .
CELL CALCIUM, 1994, 16 (04) :289-296
[7]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[8]   METHODOLOGICAL ADVANCES IN PROTEIN NMR [J].
BAX, A ;
GRZESIEK, S .
ACCOUNTS OF CHEMICAL RESEARCH, 1993, 26 (04) :131-138
[9]   THE ALPHA-HELICAL CONTENT OF CALMODULIN IS INCREASED BY SOLUTION CONDITIONS FAVORING PROTEIN CRYSTALLIZATION [J].
BAYLEY, PM ;
MARTIN, SR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1160 (01) :16-21
[10]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325