ON PACKING UNEQUAL RECTANGLES IN THE UNIT SQUARE

被引:8
作者
JENNINGS, D
机构
[1] Department of Mathematics, University of Southampton, Southampton
关键词
D O I
10.1016/0097-3165(94)90116-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper improves a previous bound, due to Meir and Moser in [J. Combin. Theory 5 (1968), 126-134] concerning the smallest square into which all of the rectangles of size 1/n x 1/(n + 1), n = 1,2,3,... can be packed. (C) 1994 Academic Press, Inc.
引用
收藏
页码:465 / 469
页数:5
相关论文
共 4 条
[1]  
CROFT HT, 1991, UNSOLVED PROBLEMS IN, V2, P112
[2]  
Meir A., 1968, J COMB THEORY, V5, P126, DOI DOI 10.1016/S0021-9800(68)80047-X
[3]   SOME PACKING AND COVERING THEOREMS [J].
MOON, JW ;
MOSER, L .
COLLOQUIUM MATHEMATICUM, 1967, 17 (01) :103-&
[4]   TILING THE UNIT SQUARE WITH SQUARES AND RECTANGLES [J].
OWINGS, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) :156-160