A GENERAL, ENERGY-SEPARABLE POLYNOMIAL REPRESENTATION OF THE TIME-INDEPENDENT FULL GREEN OPERATOR WITH APPLICATION TO TIME-INDEPENDENT WAVEPACKET FORMS OF SCHRODINGER AND LIPPMANN-SCHWINGER EQUATIONS

被引:68
作者
HUANG, YH
KOURI, DJ
HOFFMAN, DK
机构
[1] UNIV HOUSTON,DEPT PHYS,HOUSTON,TX 77204
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT CHEM,AMES,IA 50011
[3] IOWA STATE UNIV SCI & TECHNOL,US DOE,AMES LAB,AMES,IA 50011
关键词
D O I
10.1016/0009-2614(94)00590-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A general, energy-separable Faber polynomial representation of the full time-independent Green operator is presented. Non-Hermitian Hamiltonians are included, allowing treatment of negative imaginary absorbing potentials. A connection between the Faber polynomial expansion and our earlier Chebychev polynomial expansion (Chem. Phys. Letters 206 (1993) 96) is established, thereby generalizing the Chebychev expansion to the complex energy plane. The method is applied to collinear H + H-2 reactive scattering.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 39 条
[1]   A NEW COMPUTATIONAL ALGORITHM FOR GREENS-FUNCTIONS - FOURIER-TRANSFORM OF THE NEWTON POLYNOMIAL EXPANSION [J].
AUERBACH, SM ;
LEFORESTIER, C .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 78 (1-2) :55-66
[2]   EFFICIENT POLYNOMIAL EXPANSION OF THE SCATTERING GREENS-FUNCTION - APPLICATION TO THE D+H-2(V=1) RATE-CONSTANT [J].
AUERBACH, SM ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (02) :1103-1112
[3]   OBTAINING THE EXCITED-STATE POTENTIAL BY INVERSION OF PHOTODISSOCIATION ABSORPTION-SPECTRA [J].
BAER, R ;
KOSLOFF, R .
CHEMICAL PHYSICS LETTERS, 1992, 200 (1-2) :183-191
[4]   SOLUTION OF THE TIME-DEPENDENT LIOUVILLE-VONNEUMANN EQUATION - DISSIPATIVE EVOLUTION [J].
BERMAN, M ;
KOSLOFF, R ;
TALEZER, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05) :1283-1307
[5]   FABER POLYNOMIALS AND FABER SERIES [J].
CURTISS, JH .
AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (06) :577-&
[6]   ON SEMIITERATIVE METHODS GENERATED BY FABER POLYNOMIALS [J].
EIERMANN, M .
NUMERISCHE MATHEMATIK, 1989, 56 (2-3) :139-156
[7]   A STUDY OF SEMI-ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EIERMANN, M ;
NIETHAMMER, W ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1985, 47 (04) :505-533
[8]   Concerning Tschebischeff polynomes. [J].
Faber, G .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1920, 150 (1/4) :79-106
[9]  
Faber G, 1903, MATH ANN, V57, P398
[10]  
Golub G. H., 1961, NUMER MATH, V3, P157