CHAOS IN LIOUVILLES EQUATION

被引:2
作者
HAERI, MB [1 ]
机构
[1] HUGHES AIRCRAFT CO,ELECTROOPT SYST,EL SEGUNDO,CA 90245
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 06期
关键词
D O I
10.1103/PhysRevE.48.4215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An exact map of the probability distribution function for the kicked rotor is generated by solving Liouville's equation for any arbitrary initial condition and kicking strength. This solution is compared to the analogous quantum map. In this matter we compare two linear partial differential equations describing the evolution of wave functions in Hilbert space. This exact map is also compared to Chirikov's standard map generated from the canonical equations of motion. As expected, the classical map for the probability distribution function is chaotic for large kicking potentials. The practical reversibility of Liouville's equation is compared to Schrodinger's equation and the standard map.
引用
收藏
页码:4215 / 4220
页数:6
相关论文
共 50 条
  • [41] Stability, Chaos Detection, and Quenching Chaos in the Swing Equation System
    Chang, Shun-Chang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [42] CONTINUITY OF SPATIAL QUASICONFORMAL MAPPINGS AND LIOUVILLES
    BELINSKII, PP
    DOKLADY AKADEMII NAUK SSSR, 1962, 147 (05): : 1003 - &
  • [43] LIOUVILLES THEOREM ON FUNCTIONS WITH ELEMENTARY INTEGRALS
    ROSENLICHT, M
    PACIFIC JOURNAL OF MATHEMATICS, 1968, 24 (01) : 153 - +
  • [44] ASYMMETRIC DUFFING EQUATION AND THE APPEARANCE OF CHAOS
    CICOGNA, G
    PAPOFF, F
    EUROPHYSICS LETTERS, 1987, 3 (09): : 963 - 967
  • [45] PROPAGATION OF CHAOS FOR THE BURGERS-EQUATION
    OSADA, H
    KOTANI, S
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1985, 37 (02) : 275 - 294
  • [46] TRANSITION TO CHAOS IN A GENERALIZED VANDERPOL EQUATION
    KAPITANIAK, T
    STEEB, WH
    JOURNAL OF SOUND AND VIBRATION, 1990, 143 (01) : 167 - 170
  • [47] Chaos in a class of impulsive differential equation
    Ruan, Jiong
    Lin, Wei
    Communications in Nonlinear Science and Numerical Simulation, 1999, 4 (02): : 165 - 169
  • [48] MOLECULAR CHAOS AND BOLTZMANN-EQUATION
    PICHON, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (07): : 583 - 585
  • [49] ON LIOUVILLES THEOREM FOR GENERALIZED ANALYTIC FUNCTIONS
    VINOGRAD.VS
    DOKLADY AKADEMII NAUK SSSR, 1968, 183 (03): : 503 - &
  • [50] Effective chaos for the Kirchhoff equation on tori
    Baldi, Pietro
    Giuliani, Filippo
    Guardia, Marcel
    Haus, Emanuele
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2025, 42 (02): : 281 - 330