CHAOS IN LIOUVILLES EQUATION

被引:2
|
作者
HAERI, MB [1 ]
机构
[1] HUGHES AIRCRAFT CO,ELECTROOPT SYST,EL SEGUNDO,CA 90245
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 06期
关键词
D O I
10.1103/PhysRevE.48.4215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An exact map of the probability distribution function for the kicked rotor is generated by solving Liouville's equation for any arbitrary initial condition and kicking strength. This solution is compared to the analogous quantum map. In this matter we compare two linear partial differential equations describing the evolution of wave functions in Hilbert space. This exact map is also compared to Chirikov's standard map generated from the canonical equations of motion. As expected, the classical map for the probability distribution function is chaotic for large kicking potentials. The practical reversibility of Liouville's equation is compared to Schrodinger's equation and the standard map.
引用
收藏
页码:4215 / 4220
页数:6
相关论文
共 50 条
  • [31] Bifurcations and chaos in Duffing equation
    Zhang, Meng
    Yang, Jiang-ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (04): : 665 - 684
  • [32] MOLECULAR CHAOS AND BOLTZMANN EQUATION
    HOLLINGER, HB
    JOURNAL OF CHEMICAL PHYSICS, 1962, 36 (12) : 3208 - &
  • [33] Chaos in a linear wave equation
    Corron N.J.
    Chaos, Solitons and Fractals: X, 2019, 2
  • [34] Controlling chaos in Duffing equation
    Hai, WH
    Su, HL
    Long, AL
    NONLINEAR ACOUSTICS IN PERSPECTIVE, 1996, : 375 - 380
  • [35] LIOUVILLES THEOREM FOR BIHARMONIC FUNCTIONS
    HUILGOL, RR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 20 (01) : 37 - &
  • [36] Inhibition of chaos in a pendulum equation
    Yang, Jianping
    Jing, Zhujun
    CHAOS SOLITONS & FRACTALS, 2008, 35 (04) : 726 - 737
  • [37] Bifurcations and Chaos in Duffing Equation
    Meng Zhang Oriential Scientific and Technologic Institute Hunan Agriculture University Changsha 410081
    ActaMathematicaeApplicataeSinica, 2007, (04) : 665 - 684
  • [38] CHAOS FOR THE HYPERBOLIC BIOHEAT EQUATION
    Conejero, J. Alberto
    Rodenas, Francisco
    Trujillo, Macarena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (02) : 653 - 668
  • [39] LIOUVILLES THEOREM ON CONFORMAL MAPPING
    FLANDERS, H
    JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 15 (01): : 157 - &
  • [40] Bifurcations and Chaos in Duffing Equation
    Meng Zhang
    Jiang-ping Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 665 - 684