MULTIPLIERS ON REAL HARDY-SPACES

被引:0
作者
LIU, ZX [1 ]
机构
[1] BEIJING NORMAL UNIV,DEPT MATH,BEIJING 100875,PEOPLES R CHINA
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1992年 / 35卷 / 01期
关键词
REAL HARDY SPACES; FOURIER MULTIPLIERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H(p)(R(n)), 0 < p less-than-or-equal-to 1, be the real Hardy spaces, and H(p)(T(n)) be the periodic counterparts. We prove in this paper that if m(x) is an H(p)(R(n)) multiplier, then m approximately = {m(k)}k is-an-element-of z(n) is an H(p)(T(n)) multiplier. On the other hand, if m(x) is continuous on R(n)/{0} and m(s) approximately = {m(sk)}k is-an-element-of Z(n) forms a class of multipliers on H(p)(T(n)) with their multiplier norms uniformly bounded in s > 0, then m is an H(p)(R(n)) multiplier. And as an immediate application of these results, the "restriction theorem" for H(p)(R(n)) multipliers to lower-dimensional spaces is established.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 50 条
  • [21] Fourier multipliers on weighted Lp-spaces
    Quek, TS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (08) : 2343 - 2351
  • [22] Unimodular Fourier multipliers on homogeneous Besov spaces
    Zhao, Guoping
    Chen, Jiecheng
    Fan, Dashan
    Guo, Weichao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) : 536 - 547
  • [23] ESTIMATES FOR UNIMODULAR FOURIER MULTIPLIERS ON MODULATION SPACES
    Miyachi, Akihiko
    Nicola, Fabio
    Rivetti, Silvia
    Tabacco, Anita
    Tomita, Naohito
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) : 3869 - 3883
  • [24] Highly oscillatory unimodular Fourier multipliers on modulation spaces
    Fabio Nicola
    Eva Primo
    Anita Tabacco
    [J]. Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 359 - 378
  • [25] Unimodular Fourier multipliers with a time parameter on modulation spaces
    Congwei Song
    [J]. Journal of Inequalities and Applications, 2014
  • [26] Unimodular multipliers on α-modulation spaces: a revisit with new method
    Zhao, Guoping
    Guo, Weichao
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
  • [27] Fourier Multipliers and Littlewood-Paley for modulation spaces
    Mohanty, Parasar
    Shrivastava, Saurabh
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 324 - 338
  • [28] FOURIER MULTIPLIERS IN BANACH FUNCTION SPACES WITH UMD CONCAVIFICATIONS
    Amenta, Alex
    Lorist, Emiel
    Veraar, Mark
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (07) : 4837 - 4868
  • [29] Sharp estimates of unimodular multipliers on frequency decomposition spaces
    Zhao, Guoping
    Chen, Jiecheng
    Fan, Dashan
    Guo, Weichao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 142 : 26 - 47
  • [30] Highly oscillatory unimodular Fourier multipliers on modulation spaces
    Nicola, Fabio
    Primo, Eva
    Tabacco, Anita
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (02) : 359 - 378