MULTIPLIERS ON REAL HARDY-SPACES

被引:0
作者
LIU, ZX [1 ]
机构
[1] BEIJING NORMAL UNIV,DEPT MATH,BEIJING 100875,PEOPLES R CHINA
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1992年 / 35卷 / 01期
关键词
REAL HARDY SPACES; FOURIER MULTIPLIERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H(p)(R(n)), 0 < p less-than-or-equal-to 1, be the real Hardy spaces, and H(p)(T(n)) be the periodic counterparts. We prove in this paper that if m(x) is an H(p)(R(n)) multiplier, then m approximately = {m(k)}k is-an-element-of z(n) is an H(p)(T(n)) multiplier. On the other hand, if m(x) is continuous on R(n)/{0} and m(s) approximately = {m(sk)}k is-an-element-of Z(n) forms a class of multipliers on H(p)(T(n)) with their multiplier norms uniformly bounded in s > 0, then m is an H(p)(R(n)) multiplier. And as an immediate application of these results, the "restriction theorem" for H(p)(R(n)) multipliers to lower-dimensional spaces is established.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 9 条
[1]   JACKSON THEOREMS IN HARDY-SPACES AND APPROXIMATION BY RIESZ MEANS [J].
COLZANI, L .
JOURNAL OF APPROXIMATION THEORY, 1987, 49 (03) :240-251
[2]  
DELEEUW K, 1965, ANN MATH, V91, P364
[3]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[4]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[5]   LOCAL VERSION OF REAL HARDY SPACES [J].
GOLDBERG, D .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (01) :27-42
[7]  
Miyachi A., 1980, J FS U TOKYO, V27, P157
[8]  
STEIN E. M., 1971, INTRO FOURIER ANAL E
[9]  
Taibleson M. W., 1980, ASTERISQUE, V77, P68