SEMIPARAMETRIC ESTIMATION IN LOGISTIC MEASUREMENT ERROR MODELS

被引:1
作者
CARROLL, RJ
WAND, MP
机构
来源
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL | 1991年 / 53卷 / 03期
关键词
BANDWIDTH SELECTION; DENSITY ESTIMATION; ERRORS IN VARIABLES; GENERALIZED LINEAR MODELS; KERNEL REGRESSION; LOGISTIC REGRESSION; MAXIMUM LIKELIHOOD; MEASUREMENT ERRORS MODELS; NONPARAMETRIC REGRESSION; PROBIT REGRESSION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe semiparametric estimation and inference in a logistic regression model with measurement error in the predictors. The particular measurement error model consists of a primary data set in which only the response Y and a fallible surrogate W of the true predictor X are observed, plus a smaller validation data set for which (Y, X, W) are observed. Except for the underlying assumption of a logistic model in the true predictor, no parametric distributional assumption is made about the true predictor or its surrogate. We develop a semiparametric parameter estimate of the logistic regression parameter which is asymptotically normally distributed and computationally feasible. The estimate relies on kernel regression techniques. For scalar predictors, by a detailed analysis of the mean-squared error of the parameter estimate, we obtain a representation for an optimal bandwidth.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条
[31]   Semiparametric estimation of censored transformation models [J].
Gorgens, T .
JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (03) :377-393
[32]   Asymptotic normality of parametric part in semiparametric regression in the presence of measurement error [J].
Yalaz, Secil .
AIMS MATHEMATICS, 2025, 10 (07) :16414-16431
[33]   A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS [J].
Bercu, Bernard ;
Fraysse, Philippe .
ANNALS OF STATISTICS, 2012, 40 (02) :666-693
[34]   A mixed model approach to measurement error in semiparametric regression [J].
Hattab, Mohammad W. ;
Ruppert, David .
STATISTICS AND COMPUTING, 2021, 31 (03)
[35]   Variance matrix estimation in multivariate classical measurement error models [J].
Kekec, Elif ;
Van Keilegom, Ingrid .
STATISTICAL PAPERS, 2024, 65 (03) :1259-1284
[36]   INCORPORATING MEASUREMENT ERROR IN THE ESTIMATION OF AUTOREGRESSIVE MODELS FOR LONGITUDINAL DATA [J].
SCHMID, CH ;
SEGAL, MR ;
ROSNER, B .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 42 (1-2) :1-18
[37]   Estimation of nonlinear Berkson-type measurement error models [J].
Wang, LQ .
STATISTICA SINICA, 2003, 13 (04) :1201-1210
[38]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[39]   Instrumental variable estimation in generalized linear measurement error models [J].
Buzas, JS ;
Stefanski, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) :999-1006
[40]   A mixed model approach to measurement error in semiparametric regression [J].
Mohammad W. Hattab ;
David Ruppert .
Statistics and Computing, 2021, 31