共 50 条
SEMIPARAMETRIC ESTIMATION IN LOGISTIC MEASUREMENT ERROR MODELS
被引:1
作者:
CARROLL, RJ
WAND, MP
机构:
来源:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL
|
1991年
/
53卷
/
03期
关键词:
BANDWIDTH SELECTION;
DENSITY ESTIMATION;
ERRORS IN VARIABLES;
GENERALIZED LINEAR MODELS;
KERNEL REGRESSION;
LOGISTIC REGRESSION;
MAXIMUM LIKELIHOOD;
MEASUREMENT ERRORS MODELS;
NONPARAMETRIC REGRESSION;
PROBIT REGRESSION;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We describe semiparametric estimation and inference in a logistic regression model with measurement error in the predictors. The particular measurement error model consists of a primary data set in which only the response Y and a fallible surrogate W of the true predictor X are observed, plus a smaller validation data set for which (Y, X, W) are observed. Except for the underlying assumption of a logistic model in the true predictor, no parametric distributional assumption is made about the true predictor or its surrogate. We develop a semiparametric parameter estimate of the logistic regression parameter which is asymptotically normally distributed and computationally feasible. The estimate relies on kernel regression techniques. For scalar predictors, by a detailed analysis of the mean-squared error of the parameter estimate, we obtain a representation for an optimal bandwidth.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条