SEMIPARAMETRIC ESTIMATION IN LOGISTIC MEASUREMENT ERROR MODELS

被引:1
|
作者
CARROLL, RJ
WAND, MP
机构
来源
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL | 1991年 / 53卷 / 03期
关键词
BANDWIDTH SELECTION; DENSITY ESTIMATION; ERRORS IN VARIABLES; GENERALIZED LINEAR MODELS; KERNEL REGRESSION; LOGISTIC REGRESSION; MAXIMUM LIKELIHOOD; MEASUREMENT ERRORS MODELS; NONPARAMETRIC REGRESSION; PROBIT REGRESSION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe semiparametric estimation and inference in a logistic regression model with measurement error in the predictors. The particular measurement error model consists of a primary data set in which only the response Y and a fallible surrogate W of the true predictor X are observed, plus a smaller validation data set for which (Y, X, W) are observed. Except for the underlying assumption of a logistic model in the true predictor, no parametric distributional assumption is made about the true predictor or its surrogate. We develop a semiparametric parameter estimate of the logistic regression parameter which is asymptotically normally distributed and computationally feasible. The estimate relies on kernel regression techniques. For scalar predictors, by a detailed analysis of the mean-squared error of the parameter estimate, we obtain a representation for an optimal bandwidth.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条