FRACTIONAL SPIN - MAJORANA-DIRAC FIELD

被引:33
作者
PLYUSHCHAY, MS
机构
[1] Institute for High Energy Physics, SU-142
关键词
D O I
10.1016/0370-2693(91)91679-P
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A system of equations for a free relativistic field with fractional spin is proposed, whose solutions realize the one-particle states as the unitary representations of the (2 + 1)-dimensional Poincare group. It contains a (2 + 1)-dimensional analog of the infinite-component Majorana equation, and the Dirac equation. The classical action is constructed which leads to the proposed field equations.
引用
收藏
页码:250 / 254
页数:5
相关论文
共 31 条
[1]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[2]   FRACTIONAL SPIN VIA CANONICAL QUANTIZATION OF THE O(3) NONLINEAR SIGMA MODEL [J].
BOWICK, MJ ;
KARABALI, D ;
WIJEWARDHANA, LCR .
NUCLEAR PHYSICS B, 1986, 271 (02) :417-428
[3]   CP1-FERMION CORRESPONDENCE IN 3 DIMENSIONS [J].
DESER, S ;
REDLICH, AN .
PHYSICAL REVIEW LETTERS, 1988, 61 (14) :1541-1544
[4]  
DEVEGA HJ, 1986, PHYS REV LETT, V56, P2654
[5]   NEUTRAL FERMIONS IN PARAMAGNETIC INSULATORS [J].
DZYALOSHINSKII, I ;
POLYAKOV, A ;
WIEGMANN, P .
PHYSICS LETTERS A, 1988, 127 (02) :112-114
[6]   RELATIVISTIC QUANTUM-FIELD THEORY WITH FRACTIONAL SPIN AND STATISTICS [J].
FORTE, S ;
JOLICOEUR, T .
NUCLEAR PHYSICS B, 1991, 350 (03) :589-620
[7]   QUANTUM-FIELD THEORIES OF VORTICES AND ANYONS [J].
FROHLICH, J ;
MARCHETTI, PA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (02) :177-223
[8]   ANYONS, CHERN-SIMONS LAGRANGIANS AND PHYSICS IN 2 + 1 DIMENSIONS [J].
GERBERT, PD .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (02) :173-197
[9]   ROTATIONAL ANOMALIES WITHOUT ANIONS [J].
HAGEN, CR .
PHYSICAL REVIEW D, 1985, 31 (08) :2135-2136
[10]   SPIN AND STATISTICS IN MASSIVE (2+1)-DIMENSIONAL QED [J].
HANSSON, TH ;
ROCEK, M ;
ZAHED, I ;
ZHANG, SC .
PHYSICS LETTERS B, 1988, 214 (03) :475-479