THE GENERIC DIMENSION OF THE SPACE OF C1 SPLINES OF DEGREE D-GREATER-THAN-OR-EQUAL-TO-8 ON TETRAHEDRAL DECOMPOSITIONS

被引:31
作者
ALFELD, P
SCHUMAKER, LL
WHITELEY, W
机构
[1] VANDERBILT UNIV,DEPT MATH,NASHVILLE,TN 37240
[2] YORK UNIV,DEPT MATH & STAT,N YORK M3J 1P3,ONTARIO,CANADA
关键词
MULTIVARIATE SPLINES; PIECEWISE POLYNOMIAL FUNCTIONS; TRIANGULATIONS; PROJECTION; EDGE CONTRACTING; GENERIC DIMENSIONS;
D O I
10.1137/0730047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the linear space of globally differentiable piecewise polynomial functions defined on a three-dimensional polyhedral domain which has been partitioned into tetrahedra. Combining Bernstein-Bezier methods and combinatorial and geometric techniques from rigidity theory, this paper gives an explicit expression for the generic dimension of this space for sufficiently large polynomial degrees (d greater-than-or-equal-to 8). This is the first general dimension statement of its kind.
引用
收藏
页码:889 / 920
页数:32
相关论文
共 32 条
[1]   ON THE DIMENSION OF BIVARIATE SPLINE SPACES OF SMOOTHNESS-R AND DEGREE D = 3R + 1 [J].
ALFELD, P ;
SCHUMAKER, LL .
NUMERISCHE MATHEMATIK, 1990, 57 (6-7) :651-661
[2]  
Alfeld P., 1987, Computer-Aided Geometric Design, V4, P105, DOI 10.1016/0167-8396(87)90028-8
[3]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[4]   THE DIMENSION OF BIVARIATE SPLINE SPACES OF SMOOTHNESS R FOR DEGREE D GREATER-THAN-OR-EQUAL-TO 4R+1 [J].
ALFELD, P ;
SCHUMAKER, LL .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (02) :189-197
[5]   ON DIMENSION AND EXISTENCE OF LOCAL BASES FOR MULTIVARIATE SPLINE SPACES [J].
ALFELD, P ;
SCHUMAKER, LL ;
SIRVENT, M .
JOURNAL OF APPROXIMATION THEORY, 1992, 70 (02) :243-264
[6]  
Alfeld P., 1984, Computer-Aided Geometric Design, V1, P169, DOI 10.1016/0167-8396(84)90029-3
[7]  
ALFELD P, 1989, MATH METHODS COMPUTE, P1
[8]  
ALFELD P, 1987, GEOMETRIC MODELLING, P149
[9]  
ALFELD P, 1987, J APPROX THEORY, V3, P1
[10]  
Alfeld P, 1986, NUMERICAL ANAL, P1