BALANCING FOR NONLINEAR-SYSTEMS

被引:265
作者
SCHERPEN, JMA [1 ]
机构
[1] UNIV TWENTE,DEPT APPL MATH,7500 AE ENSCHEDE,NETHERLANDS
关键词
BALANCING; NONLINEAR SYSTEMS; HAMILTON-JACOBI EQUATIONS; HANKEL SINGULAR VALUES; MODEL REDUCTION;
D O I
10.1016/0167-6911(93)90117-O
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method of balancing for nonlinear systems which is an extension of balancing for linear systems in the sense that it is based on the input and output energy of a system. It is a local result, but gives 'broader' results than we obtain by just linearizing the system. Furthermore, the relation with balancing of the linearization is dealt with. We propose to use the method as a tool for nonlinear model reduction and investigate some of the properties of the reduced system.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 17 条
[1]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[2]  
Gantmacher F.R., 1960, THEORY MATRICES
[3]   ALL OPTIMAL HANKEL-NORM APPROXIMATIONS OF LINEAR-MULTIVARIABLE SYSTEMS AND THEIR L INFINITY-ERROR BOUNDS [J].
GLOVER, K .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1115-1193
[4]  
GLOVER K, 1989, LECT NOTES CONTROL I, P179
[5]  
HEUBERGER P, 1990, IDENT MODEL CONTR, V1, P1
[6]   STABILITY OF NONLINEAR DISSIPATIVE SYSTEMS [J].
HILL, D ;
MOYLAN, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (05) :708-711
[7]  
Jonckheere E. A., 1982, J CIRCUITS SYSTEMS S, V1, P447
[8]  
KATO T, 1982, SHORT INTRO PERTURBA
[9]  
LaSalle J.P., 1976, DYNAM SYST, P211, DOI DOI 10.1016/B978-0-12-164901-2.50021-0
[10]  
Milnor J., 1963, ANN MATH STUDIES, V51