REGULARITY AND CONVERGENCE OF STOCHASTIC CONVOLUTIONS IN DUALS OF NUCLEAR FRECHET SPACES

被引:7
作者
PEREZABREU, V [1 ]
TUDOR, C [1 ]
机构
[1] UNIV BUCHAREST, BUCHAREST, ROMANIA
关键词
NUCLEAR SPACE; STOCHASTIC CONVOLUTION; STOCHASTIC EVOLUTION EQUATION; WEAK CONVERGENCE;
D O I
10.1016/0047-259X(92)90033-C
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Φ′ be the strong dual of a nuclear Fréchet space Φ. In this paper we present regularity properties, weak convergence, and convergence in probability and in mean square of Φ′-valued stochastic evolution equations and convolutions with respect to Φ′-valued cadlag martingales. © 1992.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 20 条
[1]   INHOMOGENEOUS INFINITE DIMENSIONAL LANGEVIN-EQUATIONS [J].
BOJDECKI, T ;
GOROSTIZA, LG .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1988, 6 (01) :1-9
[2]   LANGEVIN-EQUATIONS FOR L'-VALUED GAUSSIAN-PROCESSES AND FLUCTUATION LIMITS OF INFINITE PARTICLE-SYSTEMS [J].
BOJDECKI, T ;
GOROSTIZA, LG .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (02) :227-244
[3]  
BOJDECKI T, 1969, LECTURE NOTES CONTRO, V136, P132
[4]  
DUDLEY RM, 1989, REAL ANAL PROBABILIT
[5]  
FERNANDEZ B, 1992, IN PRESS J THEORET P
[6]  
FIERRO R, 1992, IN PRESS 4 P CLAPEM
[7]  
JAKUBOWSKI A, 1986, ANN I H POINCARE-PR, V22, P263
[8]  
KALLIANPUR G, 1989, LECT NOTES MATH, V1390, P119
[9]   STOCHASTIC-EVOLUTION EQUATIONS DRIVEN BY NUCLEAR-SPACE-VALUED MARTINGALES [J].
KALLIANPUR, G ;
PEREZABREU, V .
APPLIED MATHEMATICS AND OPTIMIZATION, 1988, 17 (03) :237-272
[10]   INFINITE DIMENSIONAL STOCHASTIC DIFFERENTIAL-EQUATION MODELS FOR SPATIALLY DISTRIBUTED NEURONS [J].
KALLIANPUR, G ;
WOLPERT, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 12 (02) :125-172