Following the difference method of Eshelby, the elastic interaction energy between two spherical precipitates embedded in an infinite matrix of cubic anisotropy is studied as a function of their distance of separation and alignment direction. When the precipitates are positioned along the [100] direction of the matrix phase, the elastic interaction is found to be attractive and often to exhibit a maximum value at an intercenter distance of two to three radii. For the [110] and [111] alignments, the results depend on the sign of the anisotropic factor, H=2C44+C12-C11, of the matrix phase. When it is positive as in Cu and Ni, the interaction is found to be repulsive. In the reverse case, the situation is substantially different; for the [111] alignment with a Mo matrix, the interaction is found to be of an attractive nature. © 1979 American Society for Metals and the Metallurgical Society of AIME.