MOTIVIC BIVARIANT CHARACTERISTIC CLASSES AND RELATED TOPICS

被引:1
作者
Schuermann, Joerg [1 ]
Yokura, Shoji [2 ]
机构
[1] Univ Munster, Westf, Math Inst, Einsteinstr 62, D-48019 Munster, Germany
[2] Kagoshima Univ, Dept Math & Comp Sci, Fac Sci, Kagoshima 8900065, Japan
来源
JOURNAL OF SINGULARITIES | 2012年 / 5卷
关键词
D O I
10.5427/jsing.2012.5j
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have recently constructed a bivariant analogue of the motivic Hirzebruch classes. A key idea is the construction of a suitable universal bivariant theory in the algebraic-geometric (or compact complex analytic) context, together with a corresponding "bivariant blow-up relation" generalizing Bittner's presentation of the Grothendieck group of varieties. Before we already introduced a corresponding universal "oriented" bivariant theory as an intermediate step on the way to a bivariant analogue of Levine-Morel's algebraic cobordism. Switching to the differential topological context of smooth manifolds, we similarly get a new geometric bivariant bordism theory based on the notion of a "fiberwise bordism". In this paper we make a survey on these theories.
引用
收藏
页码:124 / 152
页数:29
相关论文
共 46 条
[1]   Torification and factorization of birational maps [J].
Abramovich, D ;
Karu, K ;
Matsuki, K ;
Lodarczyk, JLW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :531-572
[2]  
[Anonymous], 1981, INTERSECTION THEORY
[3]  
[Anonymous], MEMOIRS AM MATH SOC
[4]  
[Anonymous], 2007, SPRINGER MONOGRAPHS
[5]  
Atiyah M.F., 1961, P CAMBRIDGE PHILOS S, V57, P200, DOI [DOI 10.1017/S0305004100035064, 10.1017/S0305004100035064]
[6]  
Banagl M., FIBERWISE BORDISM GR
[7]  
Baum P., 1975, I HAUTES TUDES SCI P, V45, P101, DOI [10.1007/BF02684299, DOI 10.1007/BF02684299]
[8]   The universal Euler characteristic for varieties of characteristic zero [J].
Bittner, F .
COMPOSITIO MATHEMATICA, 2004, 140 (04) :1011-1032
[9]   On Grothendieck transformations in Fulton-MacPherson's bivariant theory [J].
Brasselet, Jean-Paul ;
Schuermann, Joerg ;
Yokura, Shoji .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 211 (03) :665-684
[10]   On the uniqueness of bivariant Chern class and bivariant Riemann-Roch transformations [J].
Brasselet, Jean-Paul ;
Schuermann, Joerg ;
Yokura, Shoji .
ADVANCES IN MATHEMATICS, 2007, 210 (02) :797-812