THE BANACH ALGEBRA B(X), WHERE X IS A BK SPACE AND APPLICATIONS

被引:0
作者
de Malafosse, Bruno [1 ]
机构
[1] LMAH Univ Havre, BP 4006 IUT Le Havre, F-76610 Le Havre, France
来源
MATEMATICKI VESNIK | 2005年 / 57卷 / 1-2期
关键词
Infinite linear system; sequence space; BK space; Banach algebra; bounded operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give some properties of Banach algebras of bounded operators B(X), when X is a BK space. We then study the solvability of the equation Ax = b for b is an element of{s(alpha), s(alpha)degrees, s(alpha)((c)), l(p)(alpha)} with alpha is an element of U+ and 1 <= p < infinity. We then deal with the equation T(a)x = b, where b is an element of chi(Delta(k)) for k >= 1 integer, chi is an element of{s(alpha), s(alpha)degrees, s(alpha)((c)), l(p)(alpha)}, 1 <= p < 8 and T-a is a Toeplitz triangle matrix. Finally we apply the previous results to infinite tridiagonal matrices and explicitly calculate the inverse of an infinite tridiagonal matrix. These results generalize those given in [4, 9].
引用
收藏
页码:41 / 60
页数:20
相关论文
共 21 条
[1]  
ALJARRAH AM, 1998, REND CIRC MAT S52 2, V52, P177
[2]  
Bottcher A., 2000, INTRO LARGE TRUNCATE
[3]  
de Malafosse B., 2002, HOKKAIDO MATH J, V31, P283
[4]  
de Malafosse B., 2003, REND CIRC MAT PALERM, V52, P189
[5]  
de Malafosse B., 2003, J MATH MATH SCI, V28, P1783
[6]  
de Malafosse B., ACTA MATH SZEGED
[7]  
de Malafosse B., 2002, NOVI SAD J MATH, V32, P141
[8]  
de Malafosse B., 2001, MATEMATICKI VESNIK, V53, P91
[9]  
de Malafosse B., 2003, DEMONSTRATIO MATEMAT, V36, P155
[10]  
de Malafosse B., 2004, P MFA 03