AN IMPROVED THEORETICAL-MODEL OF ACOUSTIC AGGLOMERATION

被引:50
作者
SONG, L
KOOPMANN, GH
HOFFMANN, TL
机构
[1] Mobile Research and Development Corporation, Princeton, NJ
[2] Center for Acoustics and Vibration, Pennsylvania State University, University Park, PA
[3] CSIC Instituto de Acustica, Madrid, 28006
来源
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME | 1994年 / 116卷 / 02期
关键词
D O I
10.1115/1.2930414
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
An improved theoretical model is developed to describe the acoustic agglomeration of particles entrained in a gas medium. The improvements to the present theories are twofold. first, wave scattering is included in the orthokinetic interaction of particles and second, hydrodynamic interaction, shown to bean important agglomeration mechanism for certain operation conditions, is incorporated into the model. The influence of orthokinetic and hydrodynamic interactions introduce associated convergent velocities that cause particles to approach each other and collide. The convergent velocities are related with an acoustic agglomeration frequency function (AAFF) through a semi-statistical method. This function is the key parameter for the theoretical simulation of acoustic agglomeration.
引用
收藏
页码:208 / 214
页数:7
相关论文
共 17 条
  • [1] Bjerknes C.A., Hydrodynamische Fernkräfte, fünf Abhandlungen über die Bewegung kugelförmiger Körper in einer imkompressiblen Flüssigkeit (1863-1880), Ostwalds Klassiker Der Exakten Wissenschaften, 195, (1915)
  • [2] Danilov S.D., Average Force on a Small Sphere in a Travelling Wave Field in a Viscous Fluid, Soviet Physics—Acoustics, 31, 1, (1985)
  • [3] Hoffmann T.L., Chen W., Koopmann G.H., Song L., Scaroni A.W., Experimental and Numerical Analysis of Bimodal Acoustic Agglomeration, ASME Journal of Vibration and Acoustics, 115, 3, pp. 232-240, (1993)
  • [4] Konig W., Hydrodynamisch-akustische Untersuchungen: II. Uber die Kräfte zwischen zwei Kugeln in einer schwingenden Flüssigkeit und über die Entstehung der Kundtschen Staubfiguren, Annalen Der Physik Und Der Chemie, 42, 4, pp. 549-563, (1891)
  • [5] Mednikov E.P., Acoustic Coagulation and Precipitation of Aerosols, (1965)
  • [6] Pshenai-Severin S.V., On the Convergence of Aerosol Particles in a Sound Field under the Action of the Oseen Hydrodynamic Forces, Doklady Akademii Nauk SSSR, 125, 4, pp. 775-778, (1959)
  • [7] Reethof G., Acoustic Agglomeration of Power Plant Fly Ash for Environmental and Hot Gas Clean-up, ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 115, 4, pp. 552-557, (1988)
  • [8] Shaw D.T., Acoustic Agglomeration of Aerosols, Recent Developments in Aerosol Sciences, (1978)
  • [9] Shaw D.T., Tu K.W., Acoustic Particle Agglomeration due to Hydrodynamic Interaction between Monodisperse Aerosols, Journal of Aerosol Science, 10, pp. 317-328, (1979)
  • [10] Shirokova N.L., Part 10: Aerosol Coagulation, Ultrasonic Technology: Physical Principles of Ultrasonic Technology, (1973)