THE STATIONARY AND NONSTATIONARY STOKES SYSTEM IN EXTERIOR DOMAINS WITH NONZERO DIVERGENCE AND NONZERO BOUNDARY-VALUES

被引:13
作者
FARWIG, R [1 ]
SOHR, H [1 ]
机构
[1] UNIV GESAMTHSCH PADERBORN,FACHBEREICH MATH INFORMAT,D-33095 PADERBORN,GERMANY
关键词
D O I
10.1002/mma.1670170405
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an exterior domain OMEGA subset-of R(n), n greater-than-or-equal-to 2, we consider the generalized Stokes resolvent problem in L(q)-space where the divergence g = div u and inhomogeneous boundary values u = psi with zero flux integral-sigmaOMEGA psi . N do = 0 may be prescribed. A crucial step in our approach is to find and to analyse the right space for the divergence g. We prove existence, uniqueness and a priori estimates of the solution and get new results for the divergence problem. Further, we consider the non-stationary Stokes system with non-homogeneous divergence and boundary values and prove estimates of the solution in L(s)(0, T; L(q)(OMEGA)) for 1 < s, q < infinity.
引用
收藏
页码:269 / 291
页数:23
相关论文
共 32 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]   ON THE EXISTENCE AND REGULARITY OF THE SOLUTION OF STOKES PROBLEM IN ARBITRARY DIMENSION [J].
AMROUCHE, C ;
GIRAULT, V .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (05) :171-175
[3]  
[Anonymous], 1969, MATH THEORY VISCOUS
[4]  
Bogovskii M. E, 1979, SOVIET MATH DOKL, V20, P1094
[5]  
BOGOVSKII ME, 1980, THEORY CUBATURE FORM
[6]   ON THE BOUNDEDNESS OF THE STOKES SEMIGROUP IN 2-DIMENSIONAL EXTERIOR DOMAINS [J].
BORCHERS, W ;
VARNHORN, W .
MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (02) :275-299
[7]   ALGEBRAIC L2 DECAY FOR NAVIER-STOKES FLOWS IN EXTERIOR DOMAINS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1990, 165 (3-4) :189-227
[8]   ON THE SEMIGROUP OF THE STOKES OPERATOR FOR EXTERIOR DOMAINS IN LQ-SPACES [J].
BORCHERS, W ;
SOHR, H .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (03) :415-425
[9]  
Borchers W., 1990, HOKKAIDO MATH J, V19, P67
[10]  
Cattabriga L., 1961, REND MAT SEM U PADOV, V31, P308