OPTIMAL-CONTROL PROBLEMS FOR DISTRIBUTED-PARAMETER SYSTEMS IN BANACH-SPACES

被引:21
作者
FATTORINI, HO
机构
[1] Department of Mathematics, University of California, Los Angeles, 90024, CA
关键词
LAGRANGE MULTIPLIER RULE; KUHN-TUCKER CONDITIONS; MAXIMUM PRINCIPLE; OPTIMAL CONTROL;
D O I
10.1007/BF01200380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the infinite-dimensional nonlinear programming problem of minimizing a real-valued function f0(u) defined in a metric space V subject to the constraint f(u) is-an-element-of Y, where f(u) is defined in V and takes values in a Banach space E and Y is a subset of E. We derive and use a theorem of Kuhn-Tucker type to obtain Pontryagin's maximum principle for certain semilinear parabolic distributed parameter systems. The results apply to systems described by nonlinear heat equations and reaction-diffusion equations in L1 and L(infinity) spaces.
引用
收藏
页码:225 / 257
页数:33
相关论文
共 22 条
[1]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[2]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[3]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[4]   NECESSARY CONDITIONS FOR INFINITE-DIMENSIONAL CONTROL-PROBLEMS [J].
FATTORINI, HO ;
FRANKOWSKA, H .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1991, 4 (01) :41-67
[5]   TIME-OPTIMAL CONTROL PROBLEM IN BANACH-SPACES [J].
FATTORINI, HO .
APPLIED MATHEMATICS AND OPTIMIZATION, 1974, 1 (02) :163-188
[6]  
FATTORINI HO, 1989, INT S NUM M, V91, P123
[7]  
FATTORINI HO, 1991, INT S NUM M, V100, P115
[8]  
FATTORINI HO, 1991, LECT NOTES CONTR INF, V149, P68
[9]   A UNIFIED THEORY OF NECESSARY CONDITIONS FOR NONLINEAR NONCONVEX CONTROL-SYSTEMS [J].
FATTORINI, HO .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (02) :141-185
[10]  
FATTORINI HO, 1985, LECTURE NOTES CONTRO, V75, P162