NUMERICAL-ANALYSIS OF A CONTINUUM MODEL OF PHASE-TRANSITION

被引:245
作者
DU, Q [1 ]
NICOLAIDES, RA [1 ]
机构
[1] CARNEGIE MELLON UNIV, DEPT MATH, PITTSBURGH, PA 15213 USA
关键词
PARABOLIC EQUATIONS; PHASE TRANSITIONS; CAHN-HILLIARD EQUATION;
D O I
10.1137/0728069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for solution of the Cahn-Hilliard equation is presented. Unlike previous work, the discrete equations for the new method possess a Lyapunov function. This makes it possible to prove convergence of the approximate solutions without assumptions beyond those necessary for existence and uniqueness of the differential equation. Several consequences are explored.
引用
收藏
页码:1310 / 1322
页数:13
相关论文
共 6 条
[1]  
Boyce W, 1977, ELEMENTARY DIFFERENT
[2]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[3]  
ELLIOTT C, UNPUB NUMER MATH
[4]   NUMERICAL-STUDIES OF THE CAHN-HILLIARD EQUATION FOR PHASE-SEPARATION [J].
ELLIOTT, CM ;
FRENCH, DA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 38 (02) :97-128
[5]  
ELLIOTT CM, 1986, ARCH RATION MECH AN, V96, P339
[6]  
LIONS JL, 1979, NONHOMOGENEOUS BOUND