THE VALUE OF THE CRITICAL EXPONENT FOR REACTION-DIFFUSION EQUATIONS IN CONES

被引:78
作者
LEVINE, HA
MEIER, P
机构
[1] Department of Mathematics, Iowa State University
关键词
21;
D O I
10.1007/BF00377980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D ⊂ RN be a cone with vertex at the origin i.e., D = (0, ∞)xΩ where Ω ⊂ SN-1 and x ε D if and only if x = (r, θ) with r=|x|, θ ε Ω. We consider the initial boundary value problem: ut = Δu+up in D×(0, T), u=0 on ∂Dx(0, T) with u(x, 0)=u0(x) ≧ 0. Let ω1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let γ+ denote the positive root of γ(γ+N-2) = ω1. Let p* = 1 + 2/(N + γ+). If 1 < p < p*, no positive global solution exists. If p>p*, positive global solutions do exist. Extensions are given to the same problem for ut=Δ+|x|σup. © 1990 Springer-Verlag.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 21 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]  
BANDLE C, 1989, IN PRESS T AM MATH S
[3]  
ESCOBEDO M, IN PRESS ASYMPTOTIC
[4]  
Escobedo M., UNPUB
[5]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[6]  
Fujita H., 1970, P S PURE MATH, VXVIII, P105
[7]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[8]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505
[10]   REMARKS ON THE LARGE TIME BEHAVIOR OF A NONLINEAR DIFFUSION EQUATION [J].
KAVIAN, O .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1987, 4 (05) :423-452