ON THE APPLICATION OF SPLINE FUNCTIONS TO INITIAL-VALUE PROBLEMS WITH RETARDED ARGUMENT

被引:22
作者
ELSAFTY, A
ABOHASHA, SM
机构
[1] Department of Mathematics, The University, Assiut
关键词
Delay ordinary differential equations; spline functions approximation;
D O I
10.1080/00207169008803825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a class of numerical method for the approximate solution of ordinary differential equations with retarded argument. These methods are essentially based on the spline functions. The study of existence and uniqueness are considered for such methods. Numerical examples and comparisons with other methods are given. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:173 / 179
页数:7
相关论文
共 10 条
[1]  
BLEYER A, 1978, TU BUDAPEST ELEC ENG, V22
[3]   NUMERICAL SOLUTION OF VOLTERRA FUNCTIONAL DIFFERENTIAL EQUATIONS BY EULERS METHOD [J].
CRYER, CW ;
TAVERNIN.L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (01) :105-&
[4]  
ELGENDI S, 1974, COMPUT SOC INDIA, V5, P1
[5]  
ELSAFTY A, 1983, THESIS BUDAPEST
[6]   NUMERICAL SOLUTION OF ORDINARY AND RETARDED DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS DERIVATIVES [J].
FELDSTEIN, A ;
GOODMAN, R .
NUMERISCHE MATHEMATIK, 1973, 21 (01) :1-13
[7]  
Loscalzo F., 1969, THEORY APPL SPLINE F, P37
[8]  
LOSCALZO FR, 1967, SIAM J NUMER ANAL, V4, P433
[9]  
MICULA G, 1973, MATH COMPUTATION, V27
[10]   NUMERICAL TREATMENT OF DELAY DIFFERENTIAL-EQUATIONS BY HERMITE INTERPOLATION [J].
OBERLE, HJ ;
PESCH, HJ .
NUMERISCHE MATHEMATIK, 1981, 37 (02) :235-255