LARGE-ORDER PERTURBATION-THEORY OF THE ZEEMAN EFFECT IN HYDROGEN FROM A 4-DIMENSIONAL ANISOTROPIC ANHARMONIC-OSCILLATOR

被引:12
作者
JANKE, W
机构
[1] Institut f̈r Theorie der Elementarteilchen, Freie Universität Berlin, Arnimallee 14
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 11期
关键词
D O I
10.1103/PhysRevA.41.6071
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Zeeman Hamiltonian for (spinless) hydrogen in a constant magnetic field is shown to be equivalent to a four-dimensional anisotropic anharmonic oscillator. Using this relation, Rayleigh-Schrödinger perturbation series expansions of both systems can be related to each other and analyzed in a unified way. Special emphasis is laid upon analytical estimates of their behavior in large orders of perturbation theory. Employing the path-integral approach, a new large-order formula is derived for the expansion of the ground-state energy of the oscillator system. With use of known Bender-Wu formulas for isotropic anharmonic oscillators, the major part of this calculation becomes straightforward. Combined with the new equivalence, this calculation represents the simplest path-integral derivation of large-order formulas for the Zeeman system. © 1990 The American Physical Society.
引用
收藏
页码:6071 / 6084
页数:14
相关论文
共 70 条
[1]   BENDER-WU FORMULAS FOR DEGENERATE EIGENVALUES [J].
ADAMS, BG ;
AVRON, JE ;
CIZEK, J ;
OTTO, P ;
PALDUS, J ;
MOATS, RK ;
SILVERSTONE, HJ .
PHYSICAL REVIEW A, 1980, 21 (06) :1914-1916
[2]   REPRESENTATION-THEORY OF SO(4,2) FOR THE PERTURBATION TREATMENT OF HYDROGENIC-TYPE HAMILTONIANS BY ALGEBRAIC METHODS [J].
ADAMS, BG ;
CIZEK, J ;
PALDUS, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1982, 21 (01) :153-171
[3]   PERTURBATION-THEORY OF THE ANHARMONIC-OSCILLATOR AT LARGE ORDERS [J].
AUBERSON, G ;
MENNESSIER, G ;
MAHOUX, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 48 (01) :1-23
[4]   ZEEMAN EFFECT REVISITED [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
PHYSICS LETTERS A, 1977, 62 (04) :214-216
[5]   BENDER-WU FORMULA, THE SO(4,2) DYNAMICAL GROUP, AND THE ZEEMAN EFFECT IN HYDROGEN [J].
AVRON, JE ;
ADAMS, BG ;
CIZEK, J ;
CLAY, M ;
GLASSER, ML ;
OTTO, P ;
PALDUS, J ;
VRSCAY, E .
PHYSICAL REVIEW LETTERS, 1979, 43 (10) :691-693
[6]   BENDER-WU FORMULAS AND CLASSICAL TRAJECTORIES - HIGHER DIMENSIONS AND DEGENERACIES [J].
AVRON, JE .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1982, 21 (01) :119-124
[7]   SCHRODINGER-OPERATORS WITH MAGNETIC-FIELDS .3. ATOMS IN HOMOGENEOUS MAGNETIC-FIELD [J].
AVRON, JE ;
HERBST, IW ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (04) :529-572
[8]   SCHRODINGER-OPERATORS IN MAGNETIC-FIELDS .4. STRONGLY BOUND-STATES OF HYDROGEN IN INTENSE MAGNETIC-FIELD [J].
AVRON, JE ;
HERBST, IW ;
SIMON, B .
PHYSICAL REVIEW A, 1979, 20 (06) :2287-2296
[9]   BENDER-WU FORMULAS FOR THE ZEEMAN EFFECT IN HYDROGEN [J].
AVRON, JE .
ANNALS OF PHYSICS, 1981, 131 (01) :73-94
[10]   ANHARMONIC OSCILLATOR WITH POLYNOMIAL SELF-INTERACTION [J].
BANKS, TI ;
BENDER, CM .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (09) :1320-&