THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT

被引:21
作者
Jeong, Moonja [1 ]
机构
[1] Univ Suwon, Dept Math, Hwaseong Si 445743, Gyeonggi Do, South Korea
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2014年 / 21卷 / 03期
关键词
Schwarz lemma; boundary point; unit disc; holomorphic map;
D O I
10.7468/jksmeb.2014.21.3.219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we study the Schwarz lemma and inequalities for some holomorphic functions on the unit disc. Also, we obtain the inequality of the derivative of holomorphic maps at a boundary point of the unit disc and find a holomorphic map to satisfy the equality.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 50 条
[31]   A SCHWARZ LEMMA FOR V-HARMONIC MAPS AND THEIR APPLICATIONS [J].
Chen, Qun ;
Zhao, Guangwen .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) :504-512
[32]   Schwarz’s Lemma and Estimates of Coefficients in the Case of an Arbitrary Set of Boundary Fixed Points [J].
O. S. Kudryavtseva .
Mathematical Notes, 2021, 109 :653-657
[33]   Schwarz's Lemma and Estimates of Coefficients in the Case of an Arbitrary Set of Boundary Fixed Points [J].
Kudryavtseva, O. S. .
MATHEMATICAL NOTES, 2021, 109 (3-4) :653-657
[34]   Schwarz Lemma: The Case of Equality and an Extension [J].
Haojie Chen ;
Xiaolan Nie .
The Journal of Geometric Analysis, 2022, 32
[35]   On Harnack inequality and harmonic Schwarz lemma [J].
Kargar, Rahim .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (04) :940-954
[36]   Schwarz Lemma: The Case of Equality and an Extension [J].
Chen, Haojie ;
Nie, Xiaolan .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
[37]   On the Schwarz Lemma at the Upper Half Plane [J].
Ornek, Bulent Nafi .
FILOMAT, 2019, 33 (10) :2995-3011
[38]   Schwarz Lemma for Solutions of the α-harmonic Equation [J].
Li, Meng ;
Chen, Xingdi .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) :2691-2713
[39]   The Schwarz Lemma at the Boundary of the Egg Domain Bp1,p2 in Cn [J].
Tang, Xiaomin ;
Liu, Taishun .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (02) :381-392
[40]   A converse to the Schwarz lemma for planar harmonic maps [J].
Brevig, Ole Fredrik ;
Ortega-Cerda, Joaquim ;
Seip, Kristian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)