TAU METHOD

被引:158
作者
ORTIZ, EL
机构
关键词
D O I
10.1137/0706044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Presentation of systematic account of Lanczos' tau method. It is shown that every linear differential operator D with polynomial coefficients is uniquely associated with a sequence L of classes of equivalence of Lanczos' canonical polynomials, the polynomial soltuion of Dy(x) equals 0 being the modulo of the equivalence relation. Each class contains all multiple canonical polynomials of a given order associated with D, i. e. , multiple canonical polynomials differ by a polynomial solution of Dy(x) equals 0.
引用
收藏
页码:480 / &
相关论文
共 12 条
[1]  
BOURBAKI N, 1960, ELEMENTS MATHEMATIQU, V1
[2]   ON NUMERICAL SOLUTION OF 2-POINT BOUNDARY VALUE PROBLEMS FOR LINEAR DIFFERENTIAL EQUATIONS [J].
CHAVES, T ;
ORTIZ, EL .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (06) :415-&
[3]  
GOURSAT E, 1949, COURS ANALYSE MATHEM, V2
[4]  
LANCZOS C, 1952, NAT BUR STANDARDS AP, V9, pR5
[5]  
Lanczos C., 1956, APPLIED ANALYSIS
[6]  
Lanczos C., 1938, J MATH PHYS, V17, P123, DOI DOI 10.1002/SAPM1938171123
[7]  
LLORENTE P, 1968, MATH NOTAE, V21, P17
[8]  
LLORENTE P, IN PRESS
[9]  
LYUSTERNIK LA, 1965, HANDBOOK COMPUTING E
[10]  
ORTIZ EL, 1964, GENERATION CANONICAL