TAU METHOD

被引:157
作者
ORTIZ, EL
机构
关键词
D O I
10.1137/0706044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Presentation of systematic account of Lanczos' tau method. It is shown that every linear differential operator D with polynomial coefficients is uniquely associated with a sequence L of classes of equivalence of Lanczos' canonical polynomials, the polynomial soltuion of Dy(x) equals 0 being the modulo of the equivalence relation. Each class contains all multiple canonical polynomials of a given order associated with D, i. e. , multiple canonical polynomials differ by a polynomial solution of Dy(x) equals 0.
引用
收藏
页码:480 / &
相关论文
共 12 条
  • [1] BOURBAKI N, 1960, ELEMENTS MATHEMATIQU, V1
  • [2] ON NUMERICAL SOLUTION OF 2-POINT BOUNDARY VALUE PROBLEMS FOR LINEAR DIFFERENTIAL EQUATIONS
    CHAVES, T
    ORTIZ, EL
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (06): : 415 - &
  • [3] GOURSAT E, 1949, COURS ANALYSE MATHEM, V2
  • [4] LANCZOS C, 1952, NAT BUR STANDARDS AP, V9, pR5
  • [5] Lanczos C., 1956, APPLIED ANALYSIS
  • [6] Lanczos C., 1938, J MATH PHYS, V17, P123, DOI DOI 10.1002/SAPM1938171123
  • [7] LLORENTE P, 1968, MATH NOTAE, V21, P17
  • [8] LLORENTE P, IN PRESS
  • [9] LYUSTERNIK LA, 1965, HANDBOOK COMPUTING E
  • [10] ORTIZ EL, 1964, GENERATION CANONICAL