DERIVATION OF THE WHEELER-DEWITT EQUATION FROM A PATH INTEGRAL FOR MINISUPERSPACE MODELS

被引:262
作者
HALLIWELL, JJ
机构
来源
PHYSICAL REVIEW D | 1988年 / 38卷 / 08期
关键词
D O I
10.1103/PhysRevD.38.2468
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:2468 / 2481
页数:14
相关论文
共 53 条
[1]  
Abramowitz M., 1965, NBS APPL MATH SER, V55
[2]   WAVE-FUNCTION OF AN ANISOTROPIC UNIVERSE [J].
AMSTERDAMSKI, P .
PHYSICAL REVIEW D, 1985, 31 (12) :3073-3078
[3]   QUANTUM GEOMETRODYNAMICS - THE WHEELER-DEWITT EQUATIONS FOR THE WAVE-FUNCTION OF THE UNIVERSE [J].
BARVINSKY, AO .
PHYSICS LETTERS B, 1986, 175 (04) :401-404
[4]   QUANTUM GEOMETRODYNAMICS - THE PATH INTEGRAL AND THE INITIAL-VALUE PROBLEM FOR THE WAVE-FUNCTION OF THE UNIVERSE [J].
BARVINSKY, AO ;
PONOMARIOV, VN .
PHYSICS LETTERS B, 1986, 167 (03) :289-294
[5]   RELATIVISTIC S-MATRIX OF DYNAMICAL-SYSTEMS WITH BOSON AND FERMION CONSTRAINTS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1977, 69 (03) :309-312
[6]  
BEREZIN FA, 1966, METHOD 2ND QUANTIZAT
[7]  
CARROW U, 1985, PHYS REV D, V32, P1290
[9]   THE QUANTUM-MECHANICS OF THE SUPERSYMMETRIC NONLINEAR SIGMA-MODEL [J].
DAVIS, AC ;
MACFARLANE, AJ ;
POPAT, PC ;
VANHOLTEN, JW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (15) :2945-2954
[10]  
de Witt-Morette C., 1980, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V32, P327