FIBRATION OF THE PHASE-SPACE FOR THE KORTEWEG-DEVRIES EQUATION

被引:26
作者
KAPPELER, T [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
KORTEWEG-DEVRIES EQUATION; GLOBAL ACTION-ANGLE VARIABLES; ISOSPECTRAL POTENTIALS; SCHRODINGER EQUATION;
D O I
10.5802/aif.1265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove that the fibration of L2(S1) by potentials which are isospectral for the 1-dimensional periodic Schrodinger equation, is trivial. This result can be applied, in particular, to N-gap solutions of the Korteweg-de Vries equation (KdV) on the circle : one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
引用
收藏
页码:539 / 575
页数:37
相关论文
共 14 条
[1]  
[Anonymous], 1966, PERTURBATION THEORY
[2]  
Coddington A., 1955, THEORY ORDINARY DIFF
[3]   ON GLOBAL ACTION-ANGLE COORDINATES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :687-706
[4]   AN EXPLICIT SOLUTION OF THE INVERSE PERIODIC PROBLEM FOR HILLS EQUATION [J].
FINKEL, A ;
ISAACSON, E ;
TRUBOWITZ, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :46-53
[5]   GAPS AND BANDS OF ONE-DIMENSIONAL PERIODIC SCHRODINGER-OPERATORS .2. [J].
GARNETT, J ;
TRUBOWITZ, E .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (01) :18-37
[6]   GAPS AND BANDS OF ONE DIMENSIONAL PERIODIC SCHRODINGER-OPERATORS [J].
GARNETT, J ;
TRUBOWITZ, E .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (02) :258-312
[7]  
Gohberg IC., 1969, INTRO THEORY LINEAR
[8]   ON THE PERIODIC SPECTRUM OF THE 1-DIMENSIONAL SCHRODINGER OPERATOR [J].
KAPPELER, TH .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (01) :1-3
[9]  
MAGNUS W, 1986, HILLS EQUATION
[10]  
Marchenko V. A., 1986, STURM LIOUVILLE OPER, V22