ON THE COMPUTATION OF A MATRIX INVERSE SQUARE ROOT

被引:11
作者
SHERIF, N
机构
[1] Department of Mathematics, Kuwait University, Safat, 13060
关键词
ITERATIVE METHODS; NEWTON METHOD; MATRIX FUNCTION; SYMMETRICAL ORTHOGONALIZATION;
D O I
10.1007/BF02257775
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The inverse square root of a matrix plays a role in the computation of an optimal symmetric orthogonalization of a set of vectors. We suggest two iterative techniques to compute an inverse square root of a given matrix. The two schemes are analyzed and their numerical stability properties are investigated.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 50 条
  • [41] A DISTRIBUTED AND ITERATIVE METHOD FOR SQUARE-ROOT FILTERING IN SPACE-TIME ESTIMATION
    CHIN, TM
    KARL, WC
    WILLSKY, AS
    AUTOMATICA, 1995, 31 (01) : 67 - 82
  • [42] Convergence rates for inverse-free rational approximation of matrix functions
    Jagels, Carl
    Mach, Thomas
    Reichel, Lothar
    Vandebril, Raf
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 291 - 310
  • [43] DOMAIN-DECOMPOSITION-TYPE METHODS FOR COMPUTING THE DIAGONAL OF A MATRIX INVERSE
    Tang, Jok M.
    Saad, Yousef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2823 - 2847
  • [44] Inverse matrix estimations by iterative methods with weight functions and their stability analysis
    Cordero, Alicia
    Segura, Elaine
    Torregrosa, Juan R.
    Vassileva, Maria P.
    APPLIED MATHEMATICS LETTERS, 2024, 155
  • [45] ZNN Models for Computing Matrix Inverse Based on Hyperpower Iterative Methods
    Stojanovic, Igor
    Stanimirovic, Predrag S.
    Zivkovic, Ivan S.
    Gerontitis, Dimitrios
    Wang, Xue-Zhong
    FILOMAT, 2017, 31 (10) : 2999 - 3014
  • [46] Fast Square Root Calculation without Division for High Performance Control Systems of Power Electronics
    Dianov, Anton
    Anuchin, Alecksey
    Bodrov, Alexey
    CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, 2022, 6 (02) : 145 - 152
  • [47] Radix-64 Floating-Point Division and Square Root: Iterative and Pipelined Units
    Bruguera, Javier D.
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (10) : 2990 - 3001
  • [48] ON AN INCREMENTAL VERSION OF THE CHEBYSHEV METHOD FOR THE MATRIX P-TH ROOT
    Amat, S.
    Busquier, S.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Romero, N.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024,
  • [49] An analysis on the efficiency of Euler's method for computing the matrix pth root
    Ling, Yonghui
    Huang, Zhengda
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (06)
  • [50] An alternating direction method of multipliers for the solution of matrix equations arising in inverse problems
    Zhang, Jianjun
    Nagy, James G.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (04)