ON THE COMPUTATION OF A MATRIX INVERSE SQUARE ROOT

被引:11
|
作者
SHERIF, N
机构
[1] Department of Mathematics, Kuwait University, Safat, 13060
关键词
ITERATIVE METHODS; NEWTON METHOD; MATRIX FUNCTION; SYMMETRICAL ORTHOGONALIZATION;
D O I
10.1007/BF02257775
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The inverse square root of a matrix plays a role in the computation of an optimal symmetric orthogonalization of a set of vectors. We suggest two iterative techniques to compute an inverse square root of a given matrix. The two schemes are analyzed and their numerical stability properties are investigated.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 50 条
  • [1] AN ITERATIVE METHOD FOR THE COMPUTATION OF A MATRIX INVERSE-SQUARE ROOT
    LAKIC, S
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (11): : 867 - 873
  • [2] Computation of the Inverse of Square Matrix
    Chang, Feng Cheng
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2021, 63 (04) : 128 - 130
  • [3] Fast Differentiable Matrix Square Root and Inverse Square Root
    Song, Yue
    Sebe, Nicu
    Wang, Wei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7367 - 7380
  • [4] Fast Differentiable Matrix Square Root and Inverse Square Root
    Song, Yue
    Sebe, Nicu
    Wang, Wei
    arXiv, 2022,
  • [5] A Fast FPGA Based Architecture for Computation of Square Root and Inverse Square Root
    Hasnat, Abul
    Bhattacharyya, Tanima
    Dey, Atanu
    Halder, Santanu
    Bhattacharjee, Debotosh
    PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON 2017 DEVICES FOR INTEGRATED CIRCUIT (DEVIC), 2017, : 383 - 387
  • [6] POLYNOMIAL PRECONDITIONING FOR THE ACTION OF THE MATRIX SQUARE ROOT AND INVERSE SQUARE ROOT
    Frommer, Andreas
    Ramirez-Hidalgo, Gustavo
    Schweitzer, Marcel
    Tsolakis, Manuel
    Electronic Transactions on Numerical Analysis, 2024, 60 : 381 - 404
  • [7] Square Root and Inverse Square Root Computation Using a Fast FPGA Based Architecture
    Hasnat, Abul
    Dey, Atanu
    Halder, Santanu
    Bhattacharjee, Debotosh
    JOURNAL OF ACTIVE AND PASSIVE ELECTRONIC DEVICES, 2018, 13 (2-3): : 135 - 147
  • [8] Fast enclosure for a matrix inverse square root
    Miyajima, Shinya
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 116 - 135
  • [9] A one parameter method for the matrix inverse square root
    Lakić S.
    Applications of Mathematics, 1997, 42 (6) : 401 - 410
  • [10] A one parameter method for the matrix inverse square root
    University of Novi Sad, Technical Faculty Mihajlo Pupin, 23000 Zrenjanin
    Applic and Math, 6 (401-410):