TOPOLOGY CHANGE IN CLASSICAL AND QUANTUM-GRAVITY

被引:144
作者
HOROWITZ, GT
机构
[1] Dept. of Phys., California Univ., Santa Barbara, CA
关键词
D O I
10.1088/0264-9381/8/4/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a first-order formulation, the equations of general relativity remain well defined even in the limit that the metric becomes degenerate. It is shown that there exist smooth solutions to these equations on manifolds in which the topology of space changes. The metric becomes degenerate on a set of measure zero, but the curvature remains bounded. Thus if degenerate metrics play any role in quantum gravity, topology change is unavoidable.
引用
收藏
页码:587 / 601
页数:15
相关论文
共 33 条
[1]   DOES THE TOPOLOGY OF SPACE FLUCTUATE [J].
ANDERSON, A ;
DEWITT, B .
FOUNDATIONS OF PHYSICS, 1986, 16 (02) :91-105
[2]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[3]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[4]  
BREZIN E, 1990, PHYS LETT B, V236, P13144
[5]  
BURNETT G, 1990, POLYNOMIAL COUPLING
[6]   SELF-DUAL 2-FORMS AND GRAVITY [J].
CAPOVILLA, R ;
DELL, J ;
JACOBSON, T ;
MASON, L .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (01) :41-57
[7]  
COLEMAN S, 1988, NUCL PHYS B, V307, P864
[8]  
CONNER P, 1964, DIFFERENTIABLE PERIO, P42
[9]   STRINGS IN LESS THAN ONE DIMENSION [J].
DOUGLAS, MR ;
SHENKER, SH .
NUCLEAR PHYSICS B, 1990, 335 (03) :635-654
[10]   QUANTIZATION OF FALSE-VACUUM BUBBLES - A HAMILTONIAN TREATMENT OF GRAVITATIONAL TUNNELING [J].
FISCHLER, W ;
MORGAN, D ;
POLCHINSKI, J .
PHYSICAL REVIEW D, 1990, 42 (12) :4042-4055