ASYMPTOTICALLY ONE-DIMENSIONAL DIFFUSIONS ON THE SIERPINSKI GASKET AND THE ABC-GASKETS

被引:17
|
作者
HATTORI, K
HATTORI, T
WATANABE, H
机构
[1] UTSUNOMIYA UNIV,FAC ENGN,UTSUNOMIYA,TOCHIGI 321,JAPAN
[2] NIPPON MED COLL,DEPT MATH,NAKAHARA KU,KAWASAKI,KANAGAWA 211,JAPAN
关键词
D O I
10.1007/BF01204955
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Diffusion processes on the Sierpinski gasket and the abc-gaskets are constructed as limits of random walks. In terms of the associated renormalization group, the present method uses the inverse trajectories which converge to unstable fixed points corresponding to the random walks on one-dimensional chains. In particular, non-degenerate fixed points are unnecessary for the construction. A limit theorem related to the discrete-time multi-type non-stationary branching processes is applied.
引用
收藏
页码:85 / 116
页数:32
相关论文
共 50 条
  • [21] Change of drift in one-dimensional diffusions
    Desmettre, Sascha
    Leobacher, Gunther
    Rogers, L. C. G.
    FINANCE AND STOCHASTICS, 2021, 25 (02) : 359 - 381
  • [22] Change of drift in one-dimensional diffusions
    Sascha Desmettre
    Gunther Leobacher
    L. C. G. Rogers
    Finance and Stochastics, 2021, 25 : 359 - 381
  • [23] Convergence of integral functionals of one-dimensional diffusions
    Mijatovic, Aleksandar
    Urusov, Mikhail
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 13
  • [24] On the maximum increase and decrease of one-dimensional diffusions
    Salminen, Paavo
    Vallois, Pierre
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (09) : 5592 - 5604
  • [25] Quasistationary distributions for one-dimensional diffusions with killing
    Steinsaltz, David
    Evans, Steven N.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (03) : 1285 - 1324
  • [27] Distribution of the time to explosion for one-dimensional diffusions
    Ioannis Karatzas
    Johannes Ruf
    Probability Theory and Related Fields, 2016, 164 : 1027 - 1069
  • [28] Distribution of the time to explosion for one-dimensional diffusions
    Karatzas, Ioannis
    Ruf, Johannes
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (3-4) : 1027 - 1069
  • [29] COMPUTATIONS AND CONSERVATIVENESS OF TRACES OF ONE-DIMENSIONAL DIFFUSIONS
    Benamor, Ali
    Moussa, Rafed
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (04) : 779 - 797
  • [30] Assessing the inherent uncertainty of one-dimensional diffusions
    Eliazar, Iddo
    Cohen, Morrel H.
    PHYSICAL REVIEW E, 2013, 87 (01)