Distributed Finite-Time Formation Control for Multiple Nonholonomic Mobile Robots

被引:0
作者
Li, Miao [1 ,2 ]
Liu, Zhongxin [1 ,2 ]
Chen, Zengqiang [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Comp & Control Engn, Tianjin 300353, Peoples R China
[2] Tianjin Key Lab Intelligent Robot, Tianjin 300353, Peoples R China
[3] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
来源
PROCEEDINGS OF 2016 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL II | 2016年 / 405卷
基金
中国国家自然科学基金;
关键词
Nonholonomic mobile robot; Formation control; Distributed control; Finite-time stability; TRACKING;
D O I
10.1007/978-981-10-2335-4_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the finite-time formation control problem for a group of nonholonomic mobile robots is considered. A distributed finite-time estimator is proposed to estimate leader's state in finite time. Then, based on the estimated values of estimator, a distributed finite-time formation control law is designed. With the help of finite-time Lyapunov theory and graph theory, rigorous proof shows that the group of mobile robots can converge to desired formation pattern and its centroid can converge to the desired trajectory in finite time. Simulations are given to verify the effectiveness of the method.
引用
收藏
页码:399 / 415
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1952, Inequalities
[2]   Behavior-based formation control for multirobot teams [J].
Balch, T ;
Arkin, RC .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (06) :926-939
[3]  
Bayat F, 2016, ISA T
[4]   Cooperative control design for non-holonomic chained-form systems [J].
Cao, Ke-Cai ;
Jiang, Bin ;
Chen, YangQuan .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (09) :1525-1539
[5]  
Chen CY, 2014, IEEE DECIS CONTR P, P3695, DOI 10.1109/CDC.2014.7039964
[6]   Modeling and control of formations of nonholonomic mobile robots [J].
Desai, JP ;
Ostrowski, JP ;
Kumar, V .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (06) :905-908
[7]  
Dong Wenjie, 2006, AM CONTR C, V2, P63
[8]  
Hong Y.G., 2005, Analysis and Control of Nonlinear Systems
[9]   High precision formation control of mobile robots using virtual structures [J].
Lewis, MA ;
Tan, KH .
AUTONOMOUS ROBOTS, 1997, 4 (04) :387-403
[10]   Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics [J].
Li, Shihua ;
Du, Haibo ;
Lin, Xiangze .
AUTOMATICA, 2011, 47 (08) :1706-1712