VLSI IMPLEMENTATION OF THE CAPACITANCE MATRIX-METHOD

被引:0
作者
FAVATI, P
LOTTI, G
ROMANI, F
机构
[1] UNIV TRENTO,DIPARTMENTO MATEMAT,I-38050 TRENT,ITALY
[2] UNIV PISA,DIPARTMENTO INFORMAT,I-56100 PISA,ITALY
关键词
VLSI MODELS; AREA TIME COMPLEXITY; ORDINARY DIFFERENTIAL EQUATIONS; ELLIPTIC EQUATIONS; LINEAR SYSTEMS; MORRISON FORMULA; CAPACITANCE MATRIX METHOD;
D O I
10.1016/0167-9260(91)90003-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The solution of linear systems by the Morrison formula often allows a clever use of the structure of the coefficient matrix. This method, when applied to the solution of Partial Differential Equations, is called the capacitance matrix method. A VLSI design for this method is studied, and area-time upper bounds are obtained. Some applications are discussed.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 14 条
[1]  
Birkhoff G., 1984, NUMERICAL SOLUTION E
[2]   DIRECT SOLUTION OF DISCRETE POISSON EQUATION ON IRREGULAR REGIONS [J].
BUZBEE, BL ;
DORR, FW ;
GEORGE, JA ;
GOLUB, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) :722-&
[3]   VLSI IMPLEMENTATION OF FAST SOLVERS FOR BAND LINEAR-SYSTEMS WITH CONSTANT COEFFICIENT MATRIX [J].
CODENOTTI, B ;
ROMANI, F ;
LOTTI, G .
INFORMATION PROCESSING LETTERS, 1985, 21 (03) :159-163
[4]   A VLSI FAST SOLVER FOR TRIDIAGONAL LINEAR-SYSTEMS [J].
CODENOTTI, B ;
LOTTI, G .
INFORMATION PROCESSING LETTERS, 1986, 23 (03) :111-114
[5]  
Codenotti B., 1986, Calcolo, V23, P175, DOI 10.1007/BF02579428
[6]  
Davis PJ, 1979, CIRCULANT MATRICES
[7]  
Householder A. S., 1964, THEORY MATRICES NUME
[8]  
KRAMER MR, 1983, F COMPUTER SCI, V5, P75
[9]  
Leighton F. T., 1981, 22nd Annual Symposium on Foundations of Computer Science, P1, DOI 10.1109/SFCS.1981.22
[10]   AREA-TIME OPTIMAL VLSI NETWORKS FOR MULTIPLYING MATRICES [J].
PREPARATA, FP ;
VUILLEMIN, JE .
INFORMATION PROCESSING LETTERS, 1980, 11 (02) :77-80