ON BIVARIATE SUPER VERTEX SPLINES

被引:27
作者
CHUI, CK
LAI, M
机构
[1] TEXAS A&M UNIV SYST,DEPT MATH,COLLEGE STN,TX 77843
[2] UNIV UTAH,DEPT MATH,SALT LAKE CITY,UT 84112
关键词
Approximation order; Bézier net; Interpolation; Multivariate; Splines; Super splines;
D O I
10.1007/BF01888272
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex spline basis of the super-spline subspace {Mathematical expression} of Sdr(Δ), where d≥3r+2 and Δ is an arbitrary triangulation in R2, is constructed, so that the full approximation order of d+1 can be achieved via an approximation formula using this basis. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:399 / 419
页数:21
相关论文
共 17 条
[1]   BOUNDS FOR A CLASS OF LINEAR FUNCTIONALS WITH APPLICATIONS TO HERMITE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :362-&
[2]  
CHUI CK, 1985, MULTIVARIATE APPROXI, V3, P84
[3]  
CHUI CK, IN PRESS MATH COMP
[4]  
CHUI CK, 1987, TOPICS MULTIVARIATE, P19
[5]  
CHUI CK, 1988, CBMS SERIES APPLIED, V54
[6]  
CHUI CK, IN PRESS J APPROX TH
[7]  
de Boor C., 1987, GEOMETRIC MODELING, P21
[8]   APPROXIMATION ORDER FROM BIVARIATE C1-CUBICS - A COUNTEREXAMPLE [J].
DEBOOR, C ;
HOLLIG, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (04) :649-655
[9]   APPROXIMATION POWER OF SMOOTH BIVARIATE PP FUNCTIONS [J].
DEBOOR, C ;
HOLLIG, K .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (03) :343-363
[10]  
Farin G, 1980, TR91 BRUN U DEP MATH